Weather balloon

Last updated

Transosonde ready for release Transosonde.png
Transosonde ready for release
Picture taken at approximately 30 km above Oregon using a 1,500 gram weather balloon Picture taken at aprox. 100,000 feet above Oregon by Justin Hamel and Chris Thompson.jpg
Picture taken at approximately 30 km above Oregon using a 1,500 gram weather balloon
Rawinsonde weather balloon just after launch. Notice a parachute in the center of the string and a small instrument box at the end. After release it measures many parameters. These include temperature, relative humidity, pressure, and wind speed and wind direction. This information is transmitted back to surface observers. Nssl0020.jpg
Rawinsonde weather balloon just after launch. Notice a parachute in the center of the string and a small instrument box at the end. After release it measures many parameters. These include temperature, relative humidity, pressure, and wind speed and wind direction. This information is transmitted back to surface observers.

A weather balloon, also known as a sounding balloon, is a balloon (specifically a type of high-altitude balloon) that carries instruments to the stratosphere to send back information on atmospheric pressure, temperature, humidity and wind speed by means of a small, expendable measuring device called a radiosonde. To obtain wind data, they can be tracked by radar, radio direction finding, or navigation systems (such as the satellite-based Global Positioning System, GPS). Balloons meant to stay at a constant altitude for long periods of time are known as transosondes. Weather balloons that do not carry an instrument pack are used to determine upper-level winds and the height of cloud layers. For such balloons, a theodolite or total station is used to track the balloon's azimuth and elevation, which are then converted to estimated wind speed and direction and/or cloud height, as applicable.

Contents

Weather balloons are launched around the world for observations used to diagnose current conditions as well as by human forecasters and computer models for weather forecasting. Between 900 and 1,300 locations around the globe do routine releases, two or four times daily. [1] [2] [3] [4]

History

One of the first people to use weather balloons was Léon Teisserenc de Bort, the French meteorologist. Starting in 1896 he launched hundreds of weather balloons from his observatory in Trappes, France. These experiments led to his discovery of the tropopause and stratosphere. [5] Transosondes, weather balloons with instrumentation meant to stay at a constant altitude for long periods of time to help diagnose radioactive debris from atomic fallout, were experimented with in 1958. [6] The drone technology boom has led to the development of weather drones since the late 1990s. [7] These may begin to replace balloons as a more specific means for carrying radiosondes. [8]

Materials and equipment

The balloon itself produces the lift, and is usually made of a highly flexible latex material, though chloroprene may also be used. The unit that performs the actual measurements and radio transmissions hangs at the lower end of the string, and is called a radiosonde. Specialized radiosondes are used for measuring particular parameters, such as determining the ozone concentration.

The balloon is usually filled with hydrogen, though helium - a more expensive, but viable option nonetheless - is also frequently used. The ascent rate can be controlled by the amount of gas with which the balloon is filled. Weather balloons may reach altitudes of 40 km (25 mi) or more, limited by diminishing pressures causing the balloon to expand to such a degree (typically by a 100:1 factor) that it disintegrates. In this instance the instrument package is usually lost, [9] although a parachute may be employed to help in allowing retrieval of the instrument. Above that altitude sounding rockets are used to carry instruments aloft, and for even higher altitudes satellites are used.

Launch time, location, and uses

A hydrogen filled balloon at Cambridge Bay Upper Air station, Nunavut, Canada Hydrogen balloon at upper air.jpg
A hydrogen filled balloon at Cambridge Bay Upper Air station, Nunavut, Canada
Launch of wiki payload into stratosphere

Weather balloons are launched around the world for observations used to diagnose current conditions as well as by human forecasters and computer models for weather forecasting. Between 900 and 1,300 locations around the globe do routine releases, two or four times daily, usually at 0000 UTC and 1200 UTC. [1] [2] [3] [4] Some facilities will also do occasional supplementary special releases when meteorologists determine there is a need for additional data between the 12-hour routine launches in which time much can change in the atmosphere. Military and civilian government meteorological agencies such as the National Weather Service in the US typically launch balloons, and by international agreements almost all the data are shared with all nations.

Specialized uses also exist, such as for aviation interests, pollution monitoring, photography or videography and research. Examples include pilot balloons (Pibal). Field research programs often use mobile launchers from land vehicles as well as ships and aircraft (usually dropsondes in this case). In recent years weather balloons have also been used for scattering human ashes at high-altitude. The weather balloon was also used to create the fictional entity 'Rover' during production of the 1960s TV series The Prisoner in Portmeirion, Gwynedd, North Wales, UK in September 1966. This was retained in further scenes shot at MGM Borehamwood UK during 1966–67. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Atmospheric science</span> Study of the atmosphere, its processes, and its interactions with other systems

Atmospheric science is the study of the Earth's atmosphere and its various inner-working physical processes. Meteorology includes atmospheric chemistry and atmospheric physics with a major focus on weather forecasting. Climatology is the study of atmospheric changes that define average climates and their change over time climate variability. Aeronomy is the study of the upper layers of the atmosphere, where dissociation and ionization are important. Atmospheric science has been extended to the field of planetary science and the study of the atmospheres of the planets and natural satellites of the Solar System.

<span class="mw-page-title-main">Radiosonde</span> Meteorological instrumentation

A radiosonde is a battery-powered telemetry instrument carried into the atmosphere usually by a weather balloon that measures various atmospheric parameters and transmits them by radio to a ground receiver. Modern radiosondes measure or calculate the following variables: altitude, pressure, temperature, relative humidity, wind, cosmic ray readings at high altitude and geographical position (latitude/longitude). Radiosondes measuring ozone concentration are known as ozonesondes.

<span class="mw-page-title-main">Theodolite</span> Optical surveying instrument

A theodolite is a precision optical instrument for measuring angles between designated visible points in the horizontal and vertical planes. The traditional use has been for land surveying, but it is also used extensively for building and infrastructure construction, and some specialized applications such as meteorology and rocket launching.

<span class="mw-page-title-main">National Weather Service</span> U.S. forecasting agency of the National Oceanic and Atmospheric Administration

The National Weather Service (NWS) is an agency of the United States federal government that is tasked with providing weather forecasts, warnings of hazardous weather, and other weather-related products to organizations and the public for the purposes of protection, safety, and general information. It is a part of the National Oceanic and Atmospheric Administration (NOAA) branch of the Department of Commerce, and is headquartered in Silver Spring, Maryland, within the Washington metropolitan area. The agency was known as the United States Weather Bureau from 1890 until it adopted its current name in 1970.

METAR is a format for reporting weather information. A METAR weather report is predominantly used by aircraft pilots, and by meteorologists, who use aggregated METAR information to assist in weather forecasting. Today, according to the advancement of technology in civil aviation, the METAR is sent as IWXXM model.

<span class="mw-page-title-main">Léon Teisserenc de Bort</span> French meteorologist

Léon Philippe Teisserenc de Bort was a French meteorologist and a pioneer in the field of aerology. Together with Richard Assmann (1845-1918), he is credited as co-discoverer of the stratosphere, as both men announced their discovery during the same time period in 1902. Teisserenc de Bort pioneered the use of unmanned instrumented balloons and was the first to identify the region in the atmosphere around 8-17 kilometers of height where the lapse rate reaches zero, known today as the tropopause.

<span class="mw-page-title-main">Dropsonde</span>

A dropsonde is an expendable weather reconnaissance device created by the National Center for Atmospheric Research (NCAR), designed to be dropped from an aircraft at altitude over water to measure storm conditions as the device falls to the surface. The sonde contains a GPS receiver, along with pressure, temperature, and humidity (PTH) sensors to capture atmospheric profiles and thermodynamic data. It typically relays this data to a computer in the aircraft by radio transmission.

<span class="mw-page-title-main">ADM-Aeolus</span> Wind-measuring satellite

Aeolus, or, in full, Atmospheric Dynamics Mission-Aeolus (ADM-Aeolus), was an Earth observation satellite operated by the European Space Agency (ESA). It was built by Airbus Defence and Space, launched on 22 August 2018, and operated until it was deorbited and re-entered the atmosphere over Antarctica on 28 July 2023. ADM-Aeolus was the first satellite with equipment capable of performing global wind-component-profile observation and provided much-needed information to improve weather forecasting. Aeolus was the first satellite capable of observing what the winds are doing on Earth, from the surface of the planet and into the stratosphere 30 km high.

<span class="mw-page-title-main">Atmospheric chemistry observational databases</span> Aspect of atmospheric sciences

Over the last two centuries many environmental chemical observations have been made from a variety of ground-based, airborne, and orbital platforms and deposited in databases. Many of these databases are publicly available. All of the instruments mentioned in this article give online public access to their data. These observations are critical in developing our understanding of the Earth's atmosphere and issues such as climate change, ozone depletion and air quality. Some of the external links provide repositories of many of these datasets in one place. For example, the Cambridge Atmospheric Chemical Database, is a large database in a uniform ASCII format. Each observation is augmented with the meteorological conditions such as the temperature, potential temperature, geopotential height, and equivalent PV latitude.

<span class="mw-page-title-main">Meteorological instrumentation</span> Measuring device used in meteorology

Meteorological instruments, including meteorological sensors, are the equipment used to find the state of the atmosphere at a given time. Each science has its own unique sets of laboratory equipment. Meteorology, however, is a science which does not use much laboratory equipment but relies more on on-site observation and remote sensing equipment. In science, an observation, or observable, is an abstract idea that can be measured and for which data can be taken. Rain was one of the first quantities to be measured historically. Two other accurately measured weather-related variables are wind and humidity. Many attempts had been made prior to the 15th century to construct adequate equipment to measure atmospheric variables.

<span class="mw-page-title-main">Outline of meteorology</span> Overview of and topical guide to meteorology

The following outline is provided as an overview of and topical guide to the field of Meteorology.

<span class="mw-page-title-main">Surface weather observation</span> Fundamental data used for weather forecasts

Surface weather observations are the fundamental data used for safety as well as climatological reasons to forecast weather and issue warnings worldwide. They can be taken manually, by a weather observer, by computer through the use of automated weather stations, or in a hybrid scheme using weather observers to augment the otherwise automated weather station. The ICAO defines the International Standard Atmosphere (ISA), which is the model of the standard variation of pressure, temperature, density, and viscosity with altitude in the Earth's atmosphere, and is used to reduce a station pressure to sea level pressure. Airport observations can be transmitted worldwide through the use of the METAR observing code. Personal weather stations taking automated observations can transmit their data to the United States mesonet through the Citizen Weather Observer Program (CWOP), the UK Met Office through their Weather Observations Website (WOW), or internationally through the Weather Underground Internet site. A thirty-year average of a location's weather observations is traditionally used to determine the station's climate. In the US a network of Cooperative Observers make a daily record of summary weather and sometimes water level information.

<span class="mw-page-title-main">Reinhard Süring</span> German meteorologist

Reinhard Süring was a German meteorologist who was a native of Hamburg. He died in Potsdam, East Germany on 29 December 1950.

<span class="mw-page-title-main">Richard Assmann</span>

Richard Assmann was a German meteorologist and physician who was a native of Magdeburg. He made numerous contributions in high altitude research of the Earth's atmosphere. He was a pioneer of scientific aeronautics and considered a co-founder of aerology.

<span class="mw-page-title-main">Tuvalu Meteorological Service</span>

The Tuvalu Meteorological Service (TMS) is the principal meteorological observatory of Tuvalu and is responsible for providing weather services to the islands of Tuvalu. A meteorological office was established on Funafuti at the time the islands of Tuvalu were administered as parts of the Gilbert and Ellice Islands colony of the United Kingdom. The meteorological office is now an agency of the government of Tuvalu.

<span class="mw-page-title-main">Berlin scientific balloon flights</span> Series of balloon flights

The Berlin scientific balloon flights were a series of 65 manned and 29 unmanned balloon flights carried out between 1888 and 1899 by the German Society for the Promotion of Aeronautics to investigate the atmosphere above the planetary boundary layer. The flights were organized by Richard Aßmann, Professor at the Meteorological Institute of Berlin, who also developed the most important of the measurement instruments employed by them. The execution lay primarily in the hands of the military airship pilot Hans Groß and the meteorologist Arthur Berson. In 1894, Berson flew with the balloon Phönix to a height of 9155 meters, the highest that any human had flown until then.

<span class="mw-page-title-main">Glossary of meteorology</span> List of definitions of terms and concepts commonly used in meteorology

This glossary of meteorology is a list of terms and concepts relevant to meteorology and atmospheric science, their sub-disciplines, and related fields.

Gustave Hermite was a French aeronaut and physicist, pioneer with Georges Besançon of the weather balloon. He was the nephew of Charles Hermite, one of the fathers of modern mathematical analysis.

A weather drone, or weather-sensing uncrewed aerial vehicle (UAV), – is a remotely piloted aircraft weighing less than 25 kg and carrying sensors that collect thermodynamic and kinematic data from the mid and lower atmosphere.

Meteomatics AG is a private Swiss weather technology company headquartered in St. Gallen. Meteomatics was founded by German mathematician Dr. Martin Fengler in 2012. With a weather model of over 1,800 parameters and a horizontal resolution of 90 meters, it is the largest private meteorological company.

References

  1. 1 2 "NWS factsheet". Archived from the original on 20 February 2016.
  2. 1 2 "Weather Facts: Radiosonde | weatheronline.co.uk". www.weatheronline.co.uk. Retrieved 6 April 2023.
  3. 1 2 "Observations - Data - Modelling". public.wmo.int. 1 December 2015. Archived from the original on 18 December 2023. Retrieved 6 April 2023.
  4. 1 2 WeatherSTEM. "Upper-Air Observations". WeatherSTEM. Retrieved 6 April 2023.
  5. Chisholm, Hugh, ed. (1922). "Teisserenc de Bort, Léon Philippe"  . Encyclopædia Britannica (12th ed.). London & New York: The Encyclopædia Britannica Company.
  6. Staff (February 1958). "Chief Special Projects Section: Dr. Lester Machta" (PDF). United States Weather Bureau. pp. 39–41. Archived from the original (PDF) on 3 March 2017. Retrieved 21 April 2012.
  7. Holland, G. J.; Webster, P. J.; Curry, J. A.; Tyrell, G.; Gauntlett, D.; Brett, G.; Becker, J.; Hoag, R.; Vaglienti, W. (1 May 2001). "The Aerosonde Robotic Aircraft: A New Paradigm for Environmental Observations". Bulletin of the American Meteorological Society. 82 (5): 889–902. Bibcode:2001BAMS...82..889H. doi: 10.1175/1520-0477(2001)082<0889:TARAAN>2.3.CO;2 . ISSN   0003-0007.
  8. "Drones May Replace Weather Balloons Soon". www.outlookindia.com/. 8 June 2022. Retrieved 7 November 2022.
  9. Dabberdt, W F; Shellhorn, R; Cole, H; Paukkunen, A; Horhammer, J; Antikainen, V (2003). "Radiosondes" (PDF). Elsevier Science Direct.
  10. Paul-Davies, Steven (2002). The Prisoner Handbook. London: Pan Books. ISBN   978-0-230-53028-7.