Snow pillow

Last updated
The large panel in the foreground is the snow pillow SNOTEL site 454.jpg
The large panel in the foreground is the snow pillow

A snow pillow is a device for measuring snowpack, especially for automated reporting stations such as SNOTEL.

Contents

The snow pillow measures the water equivalent of the snow pack based on hydrostatic pressure created by overlying snow. [1] Any discrepancy due to bridging is minimized by the large dimension of the pillow, typically 9 square metres (11 sq yd).

Another application for snow pillows is to estimate the snow weight on a roof to warn of potential for roof collapse.

Snow pillows were developed in the early 1960s. [2]

Set-up

Large dimensions (e.g. 3 m × 3 m) of the pillow prevent any bridging that might occur from having an effect on the measurement readings. For snow pressure measurement on roofs using a smaller snow pillow (e.g. 1 m × 1 m) is the better choice, because of the weight of the filling of the snow pillow.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Hail</span> Form of solid precipitation

Hail is a form of solid precipitation. It is distinct from ice pellets, though the two are often confused. It consists of balls or irregular lumps of ice, each of which is called a hailstone. Ice pellets generally fall in cold weather, while hail growth is greatly inhibited during low surface temperatures.

<span class="mw-page-title-main">Snow</span> Precipitation in the form of ice crystal flakes

Snow comprises individual ice crystals that grow while suspended in the atmosphere—usually within clouds—and then fall, accumulating on the ground where they undergo further changes. It consists of frozen crystalline water throughout its life cycle, starting when, under suitable conditions, the ice crystals form in the atmosphere, increase to millimeter size, precipitate and accumulate on surfaces, then metamorphose in place, and ultimately melt, slide or sublimate away.

<span class="mw-page-title-main">Satellite temperature measurement</span> Measurements of atmospheric, land surface or sea temperature by satellites.

Satellite temperature measurements are inferences of the temperature of the atmosphere at various altitudes as well as sea and land surface temperatures obtained from radiometric measurements by satellites. These measurements can be used to locate weather fronts, monitor the El Niño-Southern Oscillation, determine the strength of tropical cyclones, study urban heat islands and monitor the global climate. Wildfires, volcanos, and industrial hot spots can also be found via thermal imaging from weather satellites.

<span class="mw-page-title-main">Pascal (unit)</span> SI derived unit of pressure

The pascal is the unit of pressure in the International System of Units (SI). It is also used to quantify internal pressure, stress, Young's modulus, and ultimate tensile strength. The unit, named after Blaise Pascal, is a SI coherent derived unit defined as one newton per square metre (N/m2). It is also equivalent to 10 barye in the CGS system. Common multiple units of the pascal are the hectopascal, which is equal to one millibar, and the kilopascal, which is equal to one centibar.

<span class="mw-page-title-main">Millimeter cloud radar</span> Weather radar tuned to cloud detection

Millimeter-wave cloud radars, also denominated cloud radars, are radar systems designed to monitor clouds with operating frequencies between 24 and 110 GHz. Accordingly, their wavelengths range from 1 mm to 1.11 cm, about ten times shorter than those used in conventional S band radars such as NEXRAD.

<span class="mw-page-title-main">Precipitation</span> Product of the condensation of atmospheric water vapor that falls under gravity

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls from clouds due to gravitational pull. The main forms of precipitation include drizzle, rain, sleet, snow, ice pellets, graupel and hail. Precipitation occurs when a portion of the atmosphere becomes saturated with water vapor, so that the water condenses and "precipitates" or falls. Thus, fog and mist are not precipitation but colloids, because the water vapor does not condense sufficiently to precipitate. Two processes, possibly acting together, can lead to air becoming saturated: cooling the air or adding water vapor to the air. Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called showers.

<span class="mw-page-title-main">Strain gauge</span> Electronic component used to measure strain

A strain gauge is a device used to measure strain on an object. Invented by Edward E. Simmons and Arthur C. Ruge in 1938, the most common type of strain gauge consists of an insulating flexible backing which supports a metallic foil pattern. The gauge is attached to the object by a suitable adhesive, such as cyanoacrylate. As the object is deformed, the foil is deformed, causing its electrical resistance to change. This resistance change, usually measured using a Wheatstone bridge, is related to the strain by the quantity known as the gauge factor.

<span class="mw-page-title-main">Clouds and the Earth's Radiant Energy System</span> NASA satellite climate data instruments

Clouds and the Earth's Radiant Energy System (CERES) is an on-going NASA climatological experiment from Earth orbit. The CERES are scientific satellite instruments, part of the NASA's Earth Observing System (EOS), designed to measure both solar-reflected and Earth-emitted radiation from the top of the atmosphere (TOA) to the Earth's surface. Cloud properties are determined using simultaneous measurements by other EOS instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS). Results from the CERES and other NASA missions, such as the Earth Radiation Budget Experiment (ERBE), could enable nearer to real-time tracking of Earth's energy imbalance (EEI) and better understanding of the role of clouds in global climate change.

<span class="mw-page-title-main">Planetary boundary layer</span> Lowest part of the atmosphere directly influenced by contact with the planetary surface

In meteorology, the planetary boundary layer (PBL), also known as the atmospheric boundary layer (ABL) or peplosphere, is the lowest part of the atmosphere and its behaviour is directly influenced by its contact with a planetary surface. On Earth it usually responds to changes in surface radiative forcing in an hour or less. In this layer physical quantities such as flow velocity, temperature, and moisture display rapid fluctuations (turbulence) and vertical mixing is strong. Above the PBL is the "free atmosphere", where the wind is approximately geostrophic, while within the PBL the wind is affected by surface drag and turns across the isobars.

<span class="mw-page-title-main">Stevenson screen</span> Enclosure for meteorological devices

A Stevenson screen or instrument shelter is a shelter or an enclosure used to protect meteorological instruments against precipitation and direct heat radiation from outside sources, while still allowing air to circulate freely around them. It forms part of a standard weather station and holds instruments that may include thermometers, a hygrometer, a psychrometer, a dewcell, a barometer, and a thermograph.

<span class="mw-page-title-main">Snow gauge</span>

A snow gauge is a type of instrument used by meteorologists and hydrologists to gather and measure the amount of solid precipitation over a set period of time.

The Goff–Gratch equation is one amongst many experimental correlation proposed to estimate the saturation water vapor pressure at a given temperature.

<span class="mw-page-title-main">Eye (cyclone)</span> Central area of calm weather in a tropical cyclone

The eye is a region of mostly calm weather at the center of a tropical cyclone. The eye of a storm is a roughly circular area, typically 30–65 kilometers in diameter. It is surrounded by the eyewall, a ring of towering thunderstorms where the most severe weather and highest winds of the cyclone occur. The cyclone's lowest barometric pressure occurs in the eye and can be as much as 15 percent lower than the pressure outside the storm.

<span class="mw-page-title-main">Apparent temperature</span> Temperature as perceived by humans

Apparent temperature, also known as "feels like", is the temperature equivalent perceived by humans, caused by the combined effects of air temperature, relative humidity and wind speed. The measure is most commonly applied to the perceived outdoor temperature. Apparent temperature was invented by Robert Steadman who published a paper about it in 1984. However, it also applies to indoor temperatures, especially saunas, and when houses and workplaces are not sufficiently heated or cooled.

The vapor pressure of water is the pressure exerted by molecules of water vapor in gaseous form. The saturation vapor pressure is the pressure at which water vapor is in thermodynamic equilibrium with its condensed state. At pressures higher than vapor pressure, water would condense, while at lower pressures it would evaporate or sublimate. The saturation vapor pressure of water increases with increasing temperature and can be determined with the Clausius–Clapeyron relation. The boiling point of water is the temperature at which the saturated vapor pressure equals the ambient pressure. Water supercooled below its normal freezing point has a higher vapor pressure than that of ice at the same temperature and is, thus, unstable.

The Penman–Monteith equation approximates net evapotranspiration (ET) from meteorological data, as a replacement for direct measurement of evapotranspiration. The equation is widely used, and was derived by the United Nations Food and Agriculture Organization for modeling reference evapotranspiration ET0.

<span class="mw-page-title-main">Climate of Greenland</span> Overview of the Climate of Greenland

Greenland's climate is a tundra climate on and near the coasts and an ice cap climate in inland areas. It typically has short, cool summers and long, moderately cold winters.

Barnes interpolation, named after Stanley L. Barnes, is the interpolation of unevenly spread data points from a set of measurements of an unknown function in two dimensions into an analytic function of two variables. An example of a situation where the Barnes scheme is important is in weather forecasting where measurements are made wherever monitoring stations may be located, the positions of which are constrained by topography. Such interpolation is essential in data visualisation, e.g. in the construction of contour plots or other representations of analytic surfaces.

The microwave sounding unit (MSU) was the predecessor to the Advanced Microwave Sounding Unit (AMSU).

Glenn Edmond Shaw is an American scientist specializing in atmospheric physics, especially relating to global climate change and long-range transport of aerosol material. He is Emeritus Professor of Physics and Atmospheric Science at the University of Alaska Fairbanks and a member of the scientific staff of the Geophysical Institute. He conducted research on global atmospheric transport of aerosols and feedback of biogenic aerosols on global climate. He and Kenneth Rahn did research on the sources and climatic effect of Arctic haze. He did pioneering work on the scientific concept of climate homeostasis through the sulfur cycle and atmospheric aerosol.

References

  1. "Snow Pillow". Glossary of Meteorology. American Meteorological Society . Retrieved 2018-02-21.
  2. R.T. Beaumont, Soil Conservation Service, Portland, Oregon (October 1965). "Mt. Hood Pressure Pillow Snow Gage". Journal of Applied Meteorology. American Meteorology Society. 4 (5): 626. Bibcode:1965JApMe...4..626B. doi: 10.1175/1520-0450(1965)004<0626:MHPPSG>2.0.CO;2 . ISSN   1520-0450.{{cite journal}}: CS1 maint: multiple names: authors list (link)