Last updated
Dropsonde delivery system on a NOAA P-3 Hurricane Hunter. Dropsonde delivery system.jpg
Dropsonde delivery system on a NOAA P-3 Hurricane Hunter.

A dropsonde is an expendable weather reconnaissance device created by the National Center for Atmospheric Research (NCAR), designed to be dropped from an aircraft at altitude over water to measure (and therefore track) storm conditions as the device falls to the surface. The sonde contains a GPS receiver, along with pressure, temperature, and humidity (PTH) sensors to capture atmospheric profiles and thermodynamic data. It typically relays these data to a computer in the aircraft by radio transmission.

Weather Short-term state of the atmosphere

Weather is the state of the atmosphere, describing for example the degree to which it is hot or cold, wet or dry, calm or stormy, clear or cloudy. Most weather phenomena occur in the lowest level of the atmosphere, the troposphere, just below the stratosphere. Weather refers to day-to-day temperature and precipitation activity, whereas climate is the term for the averaging of atmospheric conditions over longer periods of time. When used without qualification, "weather" is generally understood to mean the weather of Earth.

National Center for Atmospheric Research American research organization

The US National Center for Atmospheric Research is a US federally funded research and development center (FFRDC) managed by the nonprofit University Corporation for Atmospheric Research (UCAR) and funded by the National Science Foundation (NSF). NCAR has multiple facilities, including the I. M. Pei-designed Mesa Laboratory headquarters in Boulder, Colorado. Studies include meteorology, climate science, atmospheric chemistry, solar-terrestrial interactions, environmental and societal impacts.

Aircraft machine that is able to fly by gaining support from the air other than the reactions of the air against the earth’s surface

An aircraft is a machine that is able to fly by gaining support from the air. It counters the force of gravity by using either static lift or by using the dynamic lift of an airfoil, or in a few cases the downward thrust from jet engines. Common examples of aircraft include airplanes, helicopters, airships, gliders, and hot air balloons.



A diagram of an NCAR GPS Dropsonde Dropsonde.png
A diagram of an NCAR GPS Dropsonde

Since the early 1970s, [1] hurricane hunters have employed dropsondes while flying over the ocean to obtain meteorological data on the structure of hurricanes deemed to be of possible concern to land locations in the northern Atlantic and northeastern Pacific oceans. Dropsonde instruments are typically the only way to measure the wind and pressure near the sea surface within the core of such cyclones, allowing meteorologists to reliably establish the storm's intensity and size. The data obtained is typically fed into supercomputers for numerical weather prediction, enabling forecasters to better track and predict what will happen to the hurricane. During a typical hurricane season, the 53d Weather Reconnaissance Squadron Hurricane Hunters deploys 1000 to 1500 sondes on training and storm missions.

Hurricane hunters

Hurricane hunters are aircrews that fly into tropical cyclones in the North Atlantic Ocean and Northeastern Pacific Ocean to gather weather data. Currently, the US organizations that fly these missions are the United States Air Force Reserve's 53d Weather Reconnaissance Squadron and the National Oceanic and Atmospheric Administration's Hurricane Hunters. Such missions have also been flown by Navy units and other Air Force and NOAA units.

Tropical cyclone Is a rotating storm system

A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain. Depending on its location and strength, a tropical cyclone is referred to by different names, including hurricane, typhoon, tropical storm, cyclonic storm, tropical depression, and simply cyclone. A hurricane is a tropical cyclone that occurs in the Atlantic Ocean and northeastern Pacific Ocean, and a typhoon occurs in the northwestern Pacific Ocean; in the south Pacific or Indian Ocean, comparable storms are referred to simply as "tropical cyclones" or "severe cyclonic storms".

Numerical weather prediction uses mathematical models of the atmosphere and oceans to predict the weather based on current weather conditions

Numerical weather prediction (NWP) uses mathematical models of the atmosphere and oceans to predict the weather based on current weather conditions. Though first attempted in the 1920s, it was not until the advent of computer simulation in the 1950s that numerical weather predictions produced realistic results. A number of global and regional forecast models are run in different countries worldwide, using current weather observations relayed from radiosondes, weather satellites and other observing systems as inputs.

Aircraft reconnaissance missions are also sometimes requested to investigate the broader atmospheric structure over the ocean when cyclones may pose a significant threat to the United States. These interests include not only potential hurricanes, but also possible snow events (like nor'easters) or significant tornado outbreaks. The dropsondes are used to supplement the large gaps over oceans within the global network of daily radiosonde launches. Typically satellite data provides an estimate of conditions in such areas, but the increased precision of sondes can improve forecasts, particularly of the storm path.

A tornado outbreak is the occurrence of multiple tornadoes spawned by the same synoptic scale weather system. The number of tornadoes required to qualify as an outbreak typically are at least six to ten.

Dropsondes may also be employed during meteorological research projects.

Device and Launch Details

The sonde is a lightweight system designed to be operated by one person and is launched through a chute installed in the measuring aircraft. The device's descent is slowed and stabilized by a small square-cone parachute, allowing for more readings to be taken before it reaches the ocean surface. The parachute is designed to immediately deploy after release so as to reduce or eliminate any pendulum effect, and the device typically drops for three to five minutes. The sonde has a casing of stiff cardboard to protect electronics and form a more stable aerodynamic profile.

Pendulum weight suspended from a pivot

A pendulum is a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging back and forth. The time for one complete cycle, a left swing and a right swing, is called the period. The period depends on the length of the pendulum and also to a slight degree on the amplitude, the width of the pendulum's swing.

To obtain data in a tropical cyclone, an aircraft (in the US, operated either by NOAA or the U.S. Air Force) flies into the system. A series of dropsondes are typically released as the plane passes through the storm, typically launched with greatest frequency near the center of the storm, including into the eyewall and eye (center), if one exists. Most drops are performed at a flight level of around 10,000 feet (approx. 3,000 meters).

National Oceanic and Atmospheric Administration An American scientific agency within the US Department of Commerce that focuses on the oceans and the atmosphere

The National Oceanic and Atmospheric Administration is an American scientific agency within the United States Department of Commerce that focuses on the conditions of the oceans, major waterways, and the atmosphere.

Eye (cyclone) region of mostly calm weather at the center of strong tropical cyclones

The eye is a region of mostly calm weather at the center of strong tropical cyclones. The eye of a storm is a roughly circular area, typically 30–65 km (20–40 miles) in diameter. It is surrounded by the eyewall, a ring of towering thunderstorms where the most severe weather and highest winds occur. The cyclone's lowest barometric pressure occurs in the eye and can be as much as 15 percent lower than the pressure outside the storm.

The dropsonde sends back coded data, which includes:

  1. The date and time of the drop. Time is always in UTC.
  2. Location of the drop, indicated by the latitude, longitude, and Marsden square.
  3. The height, temperature, dewpoint depression, wind speed, and wind direction recorded at any standard isobaric surfaces encountered as the dropsonde descends, which are from the set of: 1000, 925, 850, 700, 500, 400, 300, 250 hectopascals (hPa), and at the sea surface.
  4. The temperature and dewpoint depression at all other atmospheric pressure deemed significant due to important changes or values in the atmospheric conditions found
  5. Air pressure, temperature, dewpoint depression, wind speed and wind direction of the tropopause.

Also included in the report is information on the aircraft, the mission, the dropsonde itself, and other remarks.


Dropsonde (source US Air Force) Dropsonde U.S. Air Force.jpeg
Dropsonde (source US Air Force)

A driftsonde is a high altitude, durable weather balloon holding a transmitter and a bank (35 in the first models) of miniature dropsonde capsules which can then be dropped at automatic intervals or remotely. The water-bottle-sized transmitters in the dropsondes have enough power to send information to the balloon during their parachute-controlled fall. The balloon carries a larger transmitter powerful enough to relay readings to a satellite. The single-use sensor packages cost US$300 to $400 each. [2]

Weather balloon meteorological instrumentation

A weather or sounding balloon is a balloon that carries instruments aloft to send back information on atmospheric pressure, temperature, humidity and wind speed by means of a small, expendable measuring device called a radiosonde. To obtain wind data, they can be tracked by radar, radio direction finding, or navigation systems. Balloons meant to stay at a constant altitude for long periods of time are known as transosondes. Weather balloons that do not carry an instrument pack are used to determine upper-level winds and the height of cloud layers. For such balloons, a theodolite or total station is used to track the balloon's azimuth and elevation, which are then converted to estimated wind speed and direction and/or cloud height, as applicable.

After being introduced in April 2007, around a thousand a year are expected to be used to track winds in hurricane breeding grounds off of West Africa, which are outside the operating region of Hurricane Hunter planes. [2]

See also

Related Research Articles

Radiosonde meteorological instrumentation

A radiosonde is a battery-powered telemetry instrument carried into the atmosphere usually by a weather balloon that measures various atmospheric parameters and transmits them by radio to a ground receiver. Modern radiosondes measure or calculate the following variables: altitude, pressure, temperature, relative humidity, wind, cosmic ray readings at high altitude and geographical position (latitude/longitude). Radiosondes measuring ozone concentration are known as ozonesondes.

Lockheed WC-130 weather reconnaissance version of the C-130 Hercules

The Lockheed WC-130 is a high-wing, medium-range aircraft used for weather reconnaissance missions by the United States Air Force. The aircraft is a modified version of the C-130 Hercules transport configured with specialized weather instrumentation including a dropsonde deployment/receiver system and crewed by a meteorologist for penetration of tropical cyclones and winter storms to obtain data on movement, size and intensity.

53rd Weather Reconnaissance Squadron

The 53d Weather Reconnaissance Squadron, also known by its nickname, Hurricane Hunters, is a flying unit of the United States Air Force, and "the only Department of Defense organization still flying into tropical storms and hurricanes." Aligned under the 403d Wing of the Air Force Reserve Command (AFRC) and based at Keesler Air Force Base, Mississippi, with ten aircraft, it flies into tropical cyclones in the Atlantic Ocean, the Caribbean Sea, the Gulf of Mexico and the Central Pacific Ocean for the specific purpose of directly measuring weather data in and around those storms. The 53d WRS currently operates the Lockheed WC-130J aircraft as its weather data collection platform.

This is a list of meteorology topics. The terms relate to meteorology, the interdisciplinary scientific study of the atmosphere that focuses on weather processes and forecasting.

Atmospheric model mathematical model based on the dynamical equations which govern atmospheric motions

An atmospheric model is a mathematical model constructed around the full set of primitive dynamical equations which govern atmospheric motions. It can supplement these equations with parameterizations for turbulent diffusion, radiation, moist processes, heat exchange, soil, vegetation, surface water, the kinematic effects of terrain, and convection. Most atmospheric models are numerical, i.e. they discretize equations of motion. They can predict microscale phenomena such as tornadoes and boundary layer eddies, sub-microscale turbulent flow over buildings, as well as synoptic and global flows. The horizontal domain of a model is either global, covering the entire Earth, or regional (limited-area), covering only part of the Earth. The different types of models run are thermotropic, barotropic, hydrostatic, and nonhydrostatic. Some of the model types make assumptions about the atmosphere which lengthens the time steps used and increases computational speed.

Extratropical cyclone type of cyclone

Extratropical cyclones, sometimes called mid-latitude cyclones or wave cyclones, are low-pressure areas which, along with the anticyclones of high-pressure areas, drive the weather over much of the Earth. Extratropical cyclones are capable of producing anything from cloudiness and mild showers to heavy gales, thunderstorms, blizzards, and tornadoes. These types of cyclones are defined as large scale (synoptic) low pressure weather systems that occur in the middle latitudes of the Earth. In contrast with tropical cyclones, extratropical cyclones produce rapid changes in temperature and dew point along broad lines, called weather fronts, about the center of the cyclone.

Tropical cyclone observation

Tropical cyclone observation has been carried out over the past couple of centuries in various ways. The passage of typhoons, hurricanes, as well as other tropical cyclones have been detected by word of mouth from sailors recently coming to port or by radio transmissions from ships at sea, from sediment deposits in near shore estuaries, to the wiping out of cities near the coastline. Since World War II, advances in technology have included using planes to survey the ocean basins, satellites to monitor the world's oceans from outer space using a variety of methods, radars to monitor their progress near the coastline, and recently the introduction of unmanned aerial vehicles to penetrate storms. Recent studies have concentrated on studying hurricane impacts lying within rocks or near shore lake sediments, which are branches of a new field known as paleotempestology. This article details the various methods employed in the creation of the hurricane database, as well as reconstructions necessary for reanalysis of past storms used in projects such as the Atlantic hurricane reanalysis.

Meteorological history of Hurricane Wilma

Hurricane Wilma was the most intense tropical cyclone in the Atlantic basin on record, with an atmospheric pressure of 882 hPa. Wilma's destructive journey began in the second week of October 2005. A large area of disturbed weather developed across much of the Caribbean Sea and gradually organized to the southeast of Jamaica. By late on October 15, the system was sufficiently organized for the National Hurricane Center to designate it as Tropical Depression Twenty-Four.

Tropical cyclone forecasting is the science of forecasting where a tropical cyclone's center, and its effects, are expected to be at some point in the future. There are several elements to tropical cyclone forecasting: track forecasting, intensity forecasting, rainfall forecasting, storm surge, tornado, and seasonal forecasting. While skill is increasing in regard to track forecasting, intensity forecasting skill remains nearly unchanged over the past several years. Seasonal forecasting began in the 1980s in the Atlantic basin and has spread into other basins in the years since.

Meteorological instrumentation measuring device used in meteorology

Meteorological instruments are the equipment used to sample the state of the atmosphere at a given time. Each science has its own unique sets of laboratory equipment. Meteorology, however, is a science which does not use much lab equipment but relies more on on-site observation and remote sensing equipment. In science, an observation, or observable, is an abstract idea that can be measured and for which data can be taken. Rain was one of the first quantities to be measured historically. Two other accurately measured weather-related variables are wind and humidity. Many attempts had been made prior to the 15th century to construct adequate equipment to measure atmospheric variables.

Outline of meteorology Overview of and topical guide to meteorology

The following outline is provided as an overview of and topical guide to meteorology:

The maximum sustained wind associated with a tropical cyclone is a common indicator of the intensity of the storm. Within a mature tropical cyclone, it is found within the eyewall at a distance defined as the radius of maximum wind, or RMW. Unlike gusts, the value of these winds are determined via their sampling and averaging the sampled results over a period of time. Wind measuring has been standardized globally to reflect the winds at 10 metres (33 ft) above the Earth's surface, and the maximum sustained wind represents the highest average wind over either a one-minute (US) or ten-minute time span, anywhere within the tropical cyclone. Surface winds are highly variable due to friction between the atmosphere and the Earth's surface, as well as near hills and mountains over land.

NOAA Hurricane Hunters

The NOAA Hurricane Hunters are a group of aircraft used for hurricane reconnaissance by the United States National Oceanic and Atmospheric Administration (NOAA). They fly through hurricanes to help forecasters and scientists gather operational and research data. The crews also conduct other research projects including ocean wind studies, winter storm research, thunderstorm research, coastal erosion, and air chemistry flights.

Weather reconnaissance

Weather reconnaissance is the acquisition of weather data used for research and planning. Typically the term reconnaissance refers to observing weather from the air, as opposed to the ground.

The Hurricane Rainband and Intensity Change Experiment

The Hurricane Rainband and Intensity Change Experiment (RAINEX) is a project to improve hurricane intensity forecasting via measuring interactions between rainbands and the eyewalls of tropical cyclones. The experiment was planned for the 2005 Atlantic hurricane season. This coincidence of RAINEX with the 2005 Atlantic hurricane season led to the study and exploration of infamous hurricanes Katrina, Ophelia, and Rita. Where Hurricane Katrina and Hurricane Rita would go on to cause major damage to the US Gulf coast, Hurricane Ophelia provided an interesting contrast to these powerful cyclones as it never developed greater than a category 1.

Glossary of meteorology Wikimedia list article

This glossary of meteorology is a list of terms and concepts relevant to meteorology and the atmospheric sciences, their sub-disciplines, and related fields.


  1. https://www.eol.ucar.edu/content/sounding-groups/history
  2. 1 2 "Balloons Track Storms And Save Lives: Atmospheric Scientists And Meteorologists Use Driftsondes For Hurricane Forecasts". Science Daily. April 1, 2007. Archived from the original on May 14, 2013. Retrieved 2013-05-24.