Weather station

Last updated
Weather station at Mildura Airport, Victoria, Australia. Mildura Airport Weatherstation.jpg
Weather station at Mildura Airport, Victoria, Australia.

A weather station is a facility, either on land or sea, with instruments and equipment for measuring atmospheric conditions to provide information for weather forecasts and to study the weather and climate. The measurements taken include temperature, atmospheric pressure, humidity, wind speed, wind direction, and precipitation amounts. Wind measurements are taken with as few other obstructions as possible, while temperature and humidity measurements are kept free from direct solar radiation, or insolation. Manual observations are taken at least once daily, while automated measurements are taken at least once an hour. Weather conditions out at sea are taken by ships and buoys, which measure slightly different meteorological quantities such as sea surface temperature (SST), wave height, and wave period. Drifting weather buoys outnumber their moored versions by a significant amount.

Weather forecasting application of science and technology to predict the conditions of the atmosphere for a given location and time

Weather forecasting is the application of science and technology to predict the conditions of the atmosphere for a given location and time. People have attempted to predict the weather informally for millennia and formally since the 19th century. Weather forecasts are made by collecting quantitative data about the current state of the atmosphere at a given place and using meteorology to project how the atmosphere will change.

Climate Statistics of weather conditions in a given region over long periods

Climate is defined as the average state of everyday's weather condition over a period of 30 years. It is measured by assessing the patterns of variation in temperature, humidity, atmospheric pressure, wind, precipitation, atmospheric particle count and other meteorological variables in a given region over long periods of time. Climate differs from weather, in that weather only describes the short-term conditions of these variables in a given region.

Temperature physical property of matter that quantitatively expresses the common notions of hot and cold

Temperature is a physical quantity expressing hot and cold. It is measured with a thermometer calibrated in one or more temperature scales. The most commonly used scales are the Celsius scale, Fahrenheit scale, and Kelvin scale. The kelvin is the unit of temperature in the International System of Units (SI), in which temperature is one of the seven fundamental base quantities. The Kelvin scale is widely used in science and technology.

Contents

Weather instruments

The NOAA weather station at Wake Island harbor measures and transmits data on wind speed, atmospheric pressure, air temperature and tides. NOAA weather station at Wake Island harbor.jpg
The NOAA weather station at Wake Island harbor measures and transmits data on wind speed, atmospheric pressure, air temperature and tides.

Typical weather stations have the following instruments:

Thermometer Device to measure temperature

A thermometer is a device that measures temperature or a temperature gradient. A thermometer has two important elements: (1) a temperature sensor in which some change occurs with a change in temperature; and (2) some means of converting this change into a numerical value. Thermometers are widely used in technology and industry to monitor processes, in meteorology, in medicine, and in scientific research.

A barometer is a scientific instrument used to measure air pressure. Pressure tendency can forecast short term changes in the weather. Many measurements of air pressure are used within surface weather analysis to help find surface troughs, pressure systems and frontal boundaries.

Atmospheric pressure, sometimes also called barometric pressure, is the pressure within the atmosphere of Earth. The standard atmosphere is a unit of pressure defined as 1013.25 mbar (101325 Pa), equivalent to 760 mm Hg (torr), 29.9212 inches Hg, or 14.696 psi. The atm unit is roughly equivalent to the mean sea-level atmospheric pressure on Earth, that is, the Earth's atmospheric pressure at sea level is approximately 1 atm.

In addition, at certain automated airport weather stations, additional instruments may be employed, including:

Automated airport weather station

Automated airport weather stations are automated sensor suites which are designed to serve aviation and meteorological observing needs for safe and efficient aviation operations, weather forecasting and climatology. Automated airport weather stations have become part of the backbone of weather observing in the United States and Canada and are becoming increasingly more prevalent worldwide due to their efficiency and cost-savings.

Disdrometer meteorological instrumentation

A disdrometer is an instrument used to measure the drop size distribution and velocity of falling hydrometeors. Some disdrometers can distinguish between rain, graupel, and hail.

The raindrop size distribution (DSD), or granulometry of rain, is the distribution of the number of raindrops according to their diameter (D). Three processes account for the formation of drops: the accumulation of small drops on large drops and collisions between sizes. According to the time spent in the cloud, the vertical movement in it and the ambient temperature, the drops that have a very varied history and a distribution of diameters from a few micrometers to a few millimeters.

Transmissometer meteorological instrumentation

A transmissometer is an instrument for measuring the extinction coefficient of the atmosphere and sea water, and for the determination of visual range. It operates by sending a narrow, collimated beam of energy through the propagation medium. A narrow field of view receiver at the designated measurement distance determines how much energy is arriving at the detector, and determines the path transmission and/or extinction coefficient. Atmospheric extinction is a wavelength dependent phenomenon, but the most common wavelength in use for transmissometers is 550 nm, which is in the middle of the visible waveband, and allows a good approximation of visual range.

More sophisticated stations may also measure the ultraviolet index, leaf wetness, soil moisture, soil temperature, water temperature in ponds, lakes, creeks, or rivers, and occasionally other data.

The ultraviolet index or UV Index is an international standard measurement of the strength of sunburn-producing ultraviolet (UV) radiation at a particular place and time. The scale was developed by Canadian scientists in 1992, then adopted and standardized by the UN's World Health Organization and World Meteorological Organization in 1994. It is primarily used in daily forecasts aimed at the general public, and is increasingly available as an hourly forecast as well.

Leaf wetness is a meteorological parameter that describes the amount of dew and precipitation left on surfaces. It is used for monitoring leaf moisture for agricultural purposes, such as fungus and disease control, for control of irrigation systems, and for detection of fog and dew conditions, and early detection of rainfall.

Exposure

Except for those instruments requiring direct exposure to the elements (anemometer, rain gauge), the instruments should be sheltered in a vented box, usually a Stevenson screen, to keep direct sunlight off the thermometer and wind off the hygrometer. The instrumentation may be specialized to allow for periodic recording otherwise significant manual labour is required for record keeping. Automatic transmission of data, in a format such as METAR, is also desirable as many weather station's data is required for weather forecasting.

Stevenson screen meteorological device

A Stevenson screen or instrument shelter is a shelter or an enclosure to meteorological instruments against precipitation and direct heat radiation from outside sources, while still allowing air to circulate freely around them. It forms part of a standard weather station. The Stevenson screen holds instruments that may include thermometers, a hygrometer, a psychrometer, a dewcell, a barometer and a thermograph. Stevenson screens may also be known as a cotton region shelter, an instrument shelter, a thermometer shelter, a thermoscreen or a thermometer screen. Its purpose is to provide a standardised environment in which to measure temperature, humidity, dewpoint and atmospheric pressure.

METAR is a format for reporting weather information. A METAR weather report is predominantly used by pilots in fulfillment of a part of a pre-flight weather briefing, and by meteorologists, who use aggregated METAR information to assist in weather forecasting.

Personal weather station

Roof-mounted weather station instruments Davis VantagePro.jpg
Roof-mounted weather station instruments

A personal weather station is a set of weather measuring instruments operated by a private individual, club, association, or business (where obtaining and distributing weather data is not a part of the entity's business operation). Personal weather stations have become more advanced and can include many different sensors to measure weather conditions. These sensors can vary between models but most measure wind speed, wind direction, outdoor and indoor temperatures, outdoor and indoor humidity, barometric pressure, rainfall, and UV or solar radiation. Other available sensors can measure soil moisture, soil temperature, and leaf wetness. The quality, number of instruments, and placement of personal weather stations can vary widely, making the determination of which stations collect accurate, meaningful, and comparable data difficult. There are a comprehensive number of retail weather stations available.

Personal weather stations typically involve a digital console that provides readouts of the data being collected. These consoles may interface to a personal computer where data can be displayed, stored, and uploaded to websites or data ingestion/distribution systems. Open-source weather stations are available that are designed to be fully customizable by users. [1]

Personal weather stations may be operated solely for the enjoyment and education of the owner, while some owners share their results with others. They do this by manually compiling data and distributing it, distributing data over the Internet, or sharing data via amateur radio. The Citizen Weather Observer Program (CWOP) is a service which facilitates the sharing of information from personal weather stations. This data is submitted through use of software, a personal computer, and internet connection (or amateur radio) and are utilized by groups such as the National Weather Service (NWS) when generating forecast models. Each weather station submitting data to CWOP will also have an individual Web page that depicts the data submitted by that station. The Weather Underground Internet site is another popular destination for the submittal and sharing of data with others around the world. As with CWOP, each station submitting data to Weather Underground has a unique Web page displaying their submitted data. The UK Met Office's Weather Observations Website (WOW) also allows such data to be shared and displayed. [2]

Home weather station

Home weather stations include hygrometers, thermometers, barographs, and barometers. Commonly wall mounted and made by manufacturers such as Airguide, Taylor, Springfield, Sputnik and Stormoguide.

The weather ship MS Polarfront at sea. Polarfront.jpg
The weather ship MS Polarfront at sea.

Dedicated ships

A weather ship was a ship stationed in the ocean as a platform for surface and upper air meteorological measurements for use in weather forecasting. It was also meant to aid in search and rescue operations and to support transatlantic flights. [3] [4] The establishment of weather ships proved to be so useful during World War II that the International Civil Aviation Organization (ICAO) established a global network of 13 weather ships in 1948. [3] Of the 12 left in operation in 1996, nine were located in the northern Atlantic ocean while three were located in the northern Pacific ocean. The agreement of the weather ships ended in 1990. Weather ship observations proved to be helpful in wind and wave studies, as they did not avoid weather systems like merchant ships tended to and were considered a valuable resource. [5] The last weather ship was MS Polarfront, known as weather station M ("jilindras") at 66°N, 02°E, run by the Norwegian Meteorological Institute. MS Polarfront was removed from service January 1, 2010. Since the 1960s this role has been largely superseded by satellites, long range aircraft and weather buoys. Weather observations from ships continue from thousands of voluntary merchant vessels in routine commercial operation; the Old Weather crowdsourcing project transcribes naval logs from before the era of dedicated ships.

Weather buoy operated by the NOAA National Data Buoy Center NOAA-NDBC-discus-buoy.jpg
Weather buoy operated by the NOAA National Data Buoy Center

Dedicated buoys

Weather buoys are instruments which collect weather and oceanography data within the world's oceans and lakes. [6] [7] [8] Moored buoys have been in use since 1951, [9] while drifting buoys have been used since the late 1970s. [10] Moored buoys are connected with the seabed using either chains, nylon, or buoyant polypropylene. [11] With the decline of the weather ship, they have taken a more primary role in measuring conditions over the open seas since the 1970s. [12] During the 1980s and 1990s, a network of buoys in the central and eastern tropical Pacific ocean helped study the El Niño-Southern Oscillation. [13] Moored weather buoys range from 1.5–12 metres (5–40 ft) in diameter, [11] while drifting buoys are smaller, with diameters of 30–40 centimetres (12–16 in). [14] Drifting buoys are the dominant form of weather buoy in sheer number, with 1250 located worldwide. [10] Wind data from buoys has smaller error than that from ships. [15] There are differences in the values of sea surface temperature measurements between the two platforms as well, relating to the depth of the measurement and whether or not the water is heated by the ship which measures the quantity. [16]

Synoptic weather station

A Synoptic automatic weather station PULSONIC - PULSIA - Station Synoptique.png
A Synoptic automatic weather station

Synoptic weather stations are instruments which collect meteorological information at synoptic time 00h00, 06h00, 12h00, 18h00 (UTC) and at intermediate synoptic hours 03h00, 09h00, 15h00, 21h00 (UTC).

The common instruments of measure are anemometer, wind vane, pressure sensor, thermometer, hygrometer, and rain gauge.

The weather measures are formatted in special format and transmit to WMO to help the weather forecast model.

Networks

A variety of land-based weather station networks have been set up globally. Some of these are basic to analyzing weather fronts and pressure systems, such as the synoptic observation network, while others are more regional in nature, known as mesonets.

Global

United States

Southern Hemisphere

See also

Related Research Articles

Anemometer meteorological instrumentation used for measuring the speed of wind

An anemometer is a device used for measuring wind speed, and is also a common weather station instrument. The term is derived from the Greek word anemos, which means wind, and is used to describe any wind speed instrument used in meteorology. The first known description of an anemometer was given by Leon Battista Alberti in 1450.

Meteorology Interdisciplinary scientific study of the atmosphere focusing on weather forecasting

Meteorology is a branch of the atmospheric sciences which includes atmospheric chemistry and atmospheric physics, with a major focus on weather forecasting. The study of meteorology dates back millennia, though significant progress in meteorology did not occur until the 18th century. The 19th century saw modest progress in the field after weather observation networks were formed across broad regions. Prior attempts at prediction of weather depended on historical data. It was not until after the elucidation of the laws of physics and more particularly, the development of the computer, allowing for the automated solution of a great many equations that model the weather, in the latter half of the 20th century that significant breakthroughs in weather forecasting were achieved. An important domain of weather forecasting is marine weather forecasting as it relates to maritime and coastal safety, in which weather effects also include atmospheric interactions with large bodies of water.

Rain gauge meteorological instrumentation

A rain gauge is an instrument used by meteorologists and hydrologists to gather and measure the amount of liquid precipitation over a set period of time.

Automatic weather station set of sensors that record and provide physical measurements and meteorological parameters without any human intervention

An automatic weather station (AWS) is an automated version of the traditional weather station, either to save human labour or to enable measurements from remote areas. An AWS will typically consist of a weather-proof enclosure containing the data logger, rechargeable battery, telemetry (optional) and the meteorological sensors with an attached solar panel or wind turbine and mounted upon a mast. The specific configuration may vary due to the purpose of the system. The system may report in near real time via the Argos System and the Global Telecommunications System, or save the data for later recovery.

Weather buoy Floating nstrument package which collects weather and ocean data on the worlds oceans

Weather buoys are instruments which collect weather and ocean data within the world's oceans, as well as aid during emergency response to chemical spills, legal proceedings, and engineering design. Moored buoys have been in use since 1951, while drifting buoys have been used since 1979. Moored buoys are connected with the ocean bottom using either chains, nylon, or buoyant polypropylene. With the decline of the weather ship, they have taken a more primary role in measuring conditions over the open seas since the 1970s. During the 1980s and 1990s, a network of buoys in the central and eastern tropical Pacific Ocean helped study the El Niño-Southern Oscillation. Moored weather buoys range from 1.5–12 metres (5–40 ft) in diameter, while drifting buoys are smaller, with diameters of 30–40 centimetres (12–16 in). Drifting buoys are the dominant form of weather buoy in sheer number, with 1250 located worldwide. Wind data from buoys has smaller error than that from ships. There are differences in the values of sea surface temperature measurements between the two platforms as well, relating to the depth of the measurement and whether or not the water is heated by the ship which measures the quantity.

Citizen Weather Observer Program

The Citizen Weather Observer Program (CWOP) is a network of privately owned electronic weather stations concentrated in the United States but also located in over 150 countries. Network participation allows volunteers with computerized weather stations to send automated surface weather observations to the National Weather Service (NWS) by way of the Meteorological Assimilation Data Ingest System (MADIS). This data is then used by the Rapid Refresh (RAP) forecast model to produce short term forecasts of conditions across the contiguous United States. Observations are also redistributed to the public.

Mesonet

In meteorology, a mesonet, portmanteau of mesoscale network, is a network of (typically) automated weather and environmental monitoring stations designed to observe mesoscale meteorological phenomena. Dry lines, squall lines, and sea breezes are examples of phenomena that can be observed by mesonets. Due to the space and time scales associated with mesoscale phenomena, weather stations comprising a mesonet will be spaced closer together and report more frequently than synoptic scale observing networks, such as ASOS. The term mesonet refers to the collective group of these weather stations, and are typically owned and operated by a common entity. Mesonets usually record in situ surface weather observations but some involve other observation platforms, particularly vertical profiles of the planetary boundary layer (PBL).

Meteorological instrumentation measuring device used in meteorology

Meteorological instruments are the equipment used to sample the state of the atmosphere at a given time. Each science has its own unique sets of laboratory equipment. Meteorology, however, is a science which does not use much lab equipment but relies more on on-site observation and remote sensing equipment. In science, an observation, or observable, is an abstract idea that can be measured and for which data can be taken. Rain was one of the first quantities to be measured historically. Two other accurately measured weather-related variables are wind and humidity. Many attempts had been made prior to the 15th century to construct adequate equipment to measure atmospheric variables.

The Coastal-Marine Automated Network (C-MAN) is a meteorological observation network along the coastal United States. Consisting of about sixty stations installed on lighthouses, at capes and beaches, on near shore islands, and on offshore platforms, the stations record atmospheric pressure, wind direction, speed and gust, and air temperature; however, some C-MAN stations are designed to also measure sea surface temperature, water level, waves, relative humidity, precipitation, and visibility.

Polar meteorology is the study of the atmosphere of Earth's polar regions. Surface temperature inversion is typical of polar environments and leads to the katabatic wind phenomenon. The vertical temperature structure of polar environments tends to be more complex than in mid-latitude or tropical climates.

Outline of meteorology Overview of and topical guide to meteorology

The following outline is provided as an overview of and topical guide to meteorology:

Surface weather observation Data used for safety as well as climatological reasons to forecast weather

Surface weather observations are the fundamental data used for safety as well as climatological reasons to forecast weather and issue warnings worldwide. They can be taken manually, by a weather observer, by computer through the use of automated weather stations, or in a hybrid scheme using weather observers to augment the otherwise automated weather station. The ICAO defines the International Standard Atmosphere (ISA), which is the model of the standard variation of pressure, temperature, density, and viscosity with altitude in the Earth's atmosphere, and is used to reduce a station pressure to sea level pressure. Airport observations can be transmitted worldwide through the use of the METAR observing code. Personal weather stations taking automated observations can transmit their data to the United States mesonet through the Citizen Weather Observer Program (CWOP), the UK Met Office through their Weather Observations Website (WOW), or internationally through the Weather Underground Internet site. A thirty-year average of a location's weather observations is traditionally used to determine the station's climate. In the US a network of Cooperative Observers make a daily record of summary weather and sometimes water level information.

Chesapeake Light lighthouse in Virginia, United States

Chesapeake Light is an offshore lighthouse marking the entrance to the Chesapeake Bay. The structure was first marked with a lightship in the 1930s, and was later replaced by a "Texas Tower" in 1965. The lighthouse was eventually automated and was used for supporting atmospheric measurement sites for NASA and NOAA. Due to deteriorating structural conditions, the lighthouse was deactivated in 2016. At the time it was the last remaining "Texas Tower" still in use due to obsolescence.

The following are considered essential ocean climate variables by the Ocean Observations Panel for Climate (OOPC) that are currently feasible with current observational systems.

The Oklahoma Mesonet is a network of environmental monitoring stations designed to measure the environment at the size and duration of mesoscale weather events. The phrase "mesonet" is a portmanteau of the words mesoscale and network. In meteorology, “mesoscale” refers to weather events that range in size from approximately 1 mile (1.6 km) to 150 miles (240 km) and can last from several minutes to several hours. Mesoscale events include thunderstorms, wind gusts, heat bursts, and dry lines. Without densely spaced weather observations, these mesoscale events might go undetected. In addition to surface weather observations, Oklahoma Mesonet stations also include environmental data such as on insolation and soil conditions, and some sites are co-located with wind profilers.

The Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction, also known as RAMA, is a system of moored observation buoys in the Indian Ocean that collects meteorological and oceanographic data. The data collected by RAMA will greatly enhance the ability of scientists to understand climatic events and predict monsoon events. Climatic and oceanic events in the Indian Ocean affect weather and climate throughout the rest of the world, so RAMA will support weather forecasting and climate research worldwide. Although widely supported internationally, the system has only been partially implemented due to pirate activity off the coast of Somalia.

Marine weather forecasting

Marine weather forecasting is the process by which mariners and meteorological organizations attempt to forecast future weather conditions over the Earth's oceans. Mariners have had rules of thumb regarding the navigation around tropical cyclones for many years, dividing a storm into halves and sailing through the normally weaker and more navigable half of their circulation. Marine weather forecasts by various weather organizations can be traced back to the sinking of the Royal Charter in 1859 and the RMS Titanic in 1912.

Prediction and Research Moored Array in the Atlantic A system of moored observation buoys in the tropical Atlantic Ocean which collect meteorological and oceanographic data

The Prediction and Research Moored Array in the Atlantic, also known as PIRATA, is a system of moored observation buoys in the tropical Atlantic Ocean which collect meteorological and oceanographic data. The data collected by the PIRATA array helps scientists to better understand climatic events in the Tropical Atlantic and to improve weather forecasting and climate research worldwide. Climatic and oceanic events in the tropical Atlantic, such as the Tropical Atlantic SST Dipole affect rainfall and climate in both West Africa and Northeast Brazil. The northern tropical Atlantic is also a major formation area for hurricanes affecting the West Indies and the United States. Alongside the RAMA array in the Indian Ocean and the TAO/TRITON network in the Pacific Ocean, PIRATA forms part of the worldwide system of tropical ocean observing buoys.

Navy oceanographic meteorological automatic device

The Navy oceanographic meteorological automatic device (NOMAD) is an anchored automated weather station developed shortly after World War II and still used today.

References

  1. Verbelen, Yannick (2016). "WeatherStation 3". CircuitMaker. Archived from the original on 2017-04-16. Retrieved 16 April 2017. The firmware is under active development, and users are encouraged to contribute to it by forking the repository on Github. An initiative to further develop the hardware and make it commercially available is ongoing as spin-off project OpenObservatory.
  2. "WOW - A new weather website for everyone". Met Office. 2011-02-11.
  3. 1 2 "Britain's First Weather Ship". Popular Mechanics: 136. June 1948.
  4. Malcolm Francis Willoughby (1980). The U.S. Coast Guard in World War II. Arno Press. pp. 127–130. ISBN   978-0-405-13081-6.
  5. Stanislaw R. Massel (1996). Ocean surface waves: their physics and prediction. World Scientific. pp. 369–371. ISBN   978-981-02-2109-6 . Retrieved 2011-01-18.
  6. "Great Lakes buoys". Archived from the original on 2012-06-18. Retrieved 2012-06-16.
  7. Muskegon Lake buoy
  8. Crater Lake weather buoy
  9. G. L. Timpe & N. Van de Voorde (October 1995). "NOMAD buoys: an overview of forty years of use". OCEANS '95. MTS/IEEE. Challenges of Our Changing Global Environment. Conference Proceedings. 1: 309–315. doi:10.1109/OCEANS.1995.526788.
  10. 1 2 National Aeronautics and Space Administration (2009-04-15). "Ocean Motion and Surface Currents" . Retrieved 2011-01-28.
  11. 1 2 National Data Buoy Center (2008-02-04). "Moored Buoy Program". National Oceanic and Atmospheric Administration. Archived from the original on 2011-01-03. Retrieved 2011-01-29.
  12. National Research Council (U.S.). Ocean Science Committee, National Research Council (U.S.). Study Panel on Ocean Atmosphere Interaction (1974). The role of the ocean in predicting climate: a report of workshops conducted by Study Panel on Ocean Atmosphere Interaction under the auspices of the Ocean Science Committee of the Ocean Affairs Board, Commission on Natural Resources, National Research Council. National Academies. p. 40.
  13. K. A. Browning; Robert J. Gurney (1999). Global energy and water cycles. Cambridge University Press. p. 62. ISBN   978-0-521-56057-3.
  14. R. Lumpkin & M. Pazos (2010-06-08). "What's a Drifter?". The Global Drifter Program. Retrieved 2011-01-29.
  15. Bridget R. Thomas; Elizabeth C. Kent & Val R. Swail (2005). "Methods to Homogenize Wind Speeds From Ships and Buoys" (PDF). International Journal of Climatology. John Wiley & Sons, Ltd. 25: 979–995. Bibcode:2005IJCli..25..979T. doi:10.1002/joc.1176 . Retrieved 2011-01-29.[ permanent dead link ]
  16. William J. Emery; Richard E. Thomson (2001). Data analysis methods in physical oceanography. Gulf Professional Publishing. pp. 24–25. ISBN   978-0-444-50757-0.
  17. Russ Chadwick. Citizen Weather Observer Program. Retrieved on 2008-06-11.
  18. Weather Underground. Personal Weather Station. Retrieved on 2008-06-11.
  19. Arizona Meteorological Network. Retrieved on 2008-06-11.
  20. Pennsylvania State Climatologist. Central Pennsylvania Volunteer Weather Station Network. Archived 2008-05-26 at the Wayback Machine Retrieved on 2008-06-11.
  21. University of Florida. Florida Automated Weather Network. Retrieved on 2008-06-11.
  22. University of Georgia. Georgia Environmental Monitoring Network. Retrieved on 2010-09-01.
  23. NCAR.Indiana Purdue Automated Agricultural Weather Station Network (PAAWS). Retrieved on 2008-06-11.
  24. Iowa State University Department of Agronomy. Iowa Environmental Mesonet. Retrieved on 2009-11-12.
  25. University of Utah. MesoWest. Retrieved on 2008-06-11.
  26. Michigan State University. Michigan Automated Weather Network (MAWN). Retrieved on 2008-12-01.
  27. University of Missouri Agricultural Electronic Bulletin Board. Missouri Weather Stations. Retrieved on 2008-06-11.
  28. National Weather Service. Cooperative Observer Program. Retrieved on 2008-06-11.
  29. University of Albany. NYS Mesonet. Retrieved on 2017-05-21.
  30. University of Oklahoma. Oklahoma Mesonet. Retrieved on 2008-06-11.
  31. AgriMet: The Pacific Northwest Cooperative Agricultural Weather Network. Retrieved on 2008-06-05.
  32. Automatic Weather Stations Project. Antarctic Automatic Weather Stations Project. Retrieved on 2008-06-11.
  33. Bureau of Meteorology. Automatic Weather Stations for Agricultural and Other Applications. Retrieved on 2008-06-11.
  34. Department of Agriculture and Food Western Australia. Department of Agriculture and Food Western Australia Weather Stations. Archived 2008-08-19 at the Wayback Machine Retrieved on 2008-06-11.
  35. Lower Murray Water Resources. Lower Murray Water Automatic Weather Station Network. Archived 2008-07-20 at the Wayback Machine Retrieved on 2008-06-11.