Raindrop size distribution

Last updated

The raindrop size distribution (DSD), or granulometry of rain, is the distribution of the number of raindrops according to their diameter (D). Three processes account for the formation of drops: water vapor condensation, accumulation of small drops on large drops and collisions between sizes. According to the time spent in the cloud, the vertical movement in it and the ambient temperature, the drops that have a very varied history and a distribution of diameters from a few micrometers to a few millimeters.

Contents

Definition

Two average real distributions where the linear slope can be adjusted to the Marshal-Palmer equation. DSD Marshall-Palmer.png
Two average real distributions where the linear slope can be adjusted to the Marshal-Palmer equation.
Example of distributions in convective rain in Florida with different rates of precipitation: logarithmic scale of number (N) versus linear scale of diameters (D) Raindrop size distribution graph.png
Example of distributions in convective rain in Florida with different rates of precipitation: logarithmic scale of number (N) versus linear scale of diameters (D)

In general, the drop size distribution is represented as a truncated gamma function for diameter zero to the maximum possible size of rain droplets. [2] [3] The number of drop with diameter is therefore :

with , and as constants.

Marshall-Palmer distribution

The most well-known study about raindrop size distribution is from Marshall and Palmer done at McGill University in Montréal in 1948. [4] They used stratiform rain with and concluded to an exponential drop size distribution. This Marshall-Palmer distribution is expressed as:

Where

The units of N0 are sometimes simplified to cm −4 but this removes the information that this value is calculated per cubic meter of air.

As the different precipitations (rain, snow, sleet, etc...), and the different types of clouds that produce them vary in time and space, the coefficients of the drop distribution function will vary with each situation. The Marshall-Palmer relationship is still the most quoted but it must be remembered that it is an average of many stratiform rain events in mid-latitudes. [4] The upper figure shows mean distributions of stratiform and convective rainfall. The linear part of the distributions can be adjusted with particular of the Marshall-Palmer distribution. The bottom one is a series of drop diameter distributions at several convective events in Florida with different precipitation rates. We can see that the experimental curves are more complex than the average ones, but the general appearance is the same.

Many other forms of distribution functions are therefore found in the meteorological literature to more precisely adjust the particle size to particular events. Over time researchers have realized that the distribution of drops is more of a problem of probability of producing drops of different diameters depending on the type of precipitation than a deterministic relationship. So there is a continuum of families of curves for stratiform rain, and another for convective rain. [4]

Ulbrich distribution

The Marshall and Palmer distribution uses an exponential function that does not simulate properly drops of very small diameters (the curve in the top figure). Several experiments have shown that the actual number of these droplets is less than the theoretical curve. Carlton W. Ulbrich developed a more general formula in 1983 taking into account that a drop is spherical if D <1 mm and an ellipsoid whose horizontal axis gets flattened as D gets larger. It is mechanically impossible to exceed D = 10 mm as the drop breaks at large diameters. From the general distribution, the diameter spectrum changes, μ = 0 inside the cloud, where the evaporation of small drops is negligible due to saturation conditions and μ = 2 out of the cloud, where the small drops evaporate because they are in drier air. With the same notation as before, we have for the drizzle the distribution of Ulbrich: [3]

and

Where is the liquid water content, water density, and 0.2 is an average value of the diameter in drizzle. For rain, introducing rainrate R (mm/h), the amount of rain per hour over a standard surface: [3]

and

Measurement

The first measurements of this distribution were made by rather rudimentary tool by Palmer, Marshall's student, exposing a cardboard covered with flour to the rain for a short time. The mark left by each drop being proportional to its diameter, he could determine the distribution by counting the number of marks corresponding to each droplet size. This was immediately after the Second World War.

Different devices have been developed to get this distribution more accurately:

Drop size versus radar reflectivity

Knowledge of the distribution of raindrops in a cloud can be used to relate what is recorded by a weather radar to what is obtained on the ground as the amount of precipitation. We can to find the relation between the reflectivity of the radar echoes and what we measure with a device like the disdrometer.

The rainrate (R) is equal to number of particules (), their volume () and their falling speed ():

The radar reflectivity Z is:

where K is the Permittivity of water

Z and R having similar formulation, one can solve the equations to have a Z-R of the type: [5]

Where a and b are related to the type of precipitation (rain, snow, convective (like in thunderstorms) or stratiform (like from nimbostratus clouds) which have different , K, N0 and .

The best known of this relation is the Marshall-Palmer Z-R relationship which gives a = 200 and b = 1.6. [6] It is still one of the most used because it is valid for synoptic rain in mid-latitudes, a very common case. Other relationships were found for snow, rainstorm, tropical rain, etc. [6]

Related Research Articles

<span class="mw-page-title-main">Queueing theory</span> Mathematical study of waiting lines, or queues

Queueing theory is the mathematical study of waiting lines, or queues. A queueing model is constructed so that queue lengths and waiting time can be predicted. Queueing theory is generally considered a branch of operations research because the results are often used when making business decisions about the resources needed to provide a service.

<span class="mw-page-title-main">Weather radar</span> Radar used to locate and monitor meteorological conditions

Weather radar, also called weather surveillance radar (WSR) and Doppler weather radar, is a type of radar used to locate precipitation, calculate its motion, and estimate its type. Modern weather radars are mostly pulse-Doppler radars, capable of detecting the motion of rain droplets in addition to the intensity of the precipitation. Both types of data can be analyzed to determine the structure of storms and their potential to cause severe weather.

<span class="mw-page-title-main">Laplace distribution</span> Probability distribution

In probability theory and statistics, the Laplace distribution is a continuous probability distribution named after Pierre-Simon Laplace. It is also sometimes called the double exponential distribution, because it can be thought of as two exponential distributions spliced together along the abscissa, although the term is also sometimes used to refer to the Gumbel distribution. The difference between two independent identically distributed exponential random variables is governed by a Laplace distribution, as is a Brownian motion evaluated at an exponentially distributed random time. Increments of Laplace motion or a variance gamma process evaluated over the time scale also have a Laplace distribution.

Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning. They are typically used in complex statistical models consisting of observed variables as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as might be described by a graphical model. As typical in Bayesian inference, the parameters and latent variables are grouped together as "unobserved variables". Variational Bayesian methods are primarily used for two purposes:

  1. To provide an analytical approximation to the posterior probability of the unobserved variables, in order to do statistical inference over these variables.
  2. To derive a lower bound for the marginal likelihood of the observed data. This is typically used for performing model selection, the general idea being that a higher marginal likelihood for a given model indicates a better fit of the data by that model and hence a greater probability that the model in question was the one that generated the data.
dBZ (meteorology) Unit of measure used in weather radar

Decibel relative to Z, or dBZ, is a logarithmic dimensionless technical unit used in radar, mostly in weather radar, to compare the equivalent reflectivity factor (Z) of a remote object to the return of a droplet of rain with a diameter of 1 mm. It is proportional to the number of drops per unit volume and the sixth power of drops' diameter and is thus used to estimate the rain or snow intensity. With other variables analyzed from the radar returns it helps to determine the type of precipitation. Both the radar reflectivity factor and its logarithmic version are commonly referred to as reflectivity when the context is clear. In short, the higher the dBZ value, the more likely it is for severe weather to occur in the form of precipitation.

<span class="mw-page-title-main">Noncentral chi-squared distribution</span>

In probability theory and statistics, the noncentral chi-squared distribution is a noncentral generalization of the chi-squared distribution. It often arises in the power analysis of statistical tests in which the null distribution is a chi-squared distribution; important examples of such tests are the likelihood-ratio tests.

<span class="mw-page-title-main">Inverse Gaussian distribution</span> Family of continuous probability distributions

In probability theory, the inverse Gaussian distribution is a two-parameter family of continuous probability distributions with support on (0,∞).

<span class="mw-page-title-main">Sensitivity index</span>

The sensitivity index or discriminability index or detectability index is a dimensionless statistic used in signal detection theory. A higher index indicates that the signal can be more readily detected.

Covariance matrix adaptation evolution strategy (CMA-ES) is a particular kind of strategy for numerical optimization. Evolution strategies (ES) are stochastic, derivative-free methods for numerical optimization of non-linear or non-convex continuous optimization problems. They belong to the class of evolutionary algorithms and evolutionary computation. An evolutionary algorithm is broadly based on the principle of biological evolution, namely the repeated interplay of variation and selection: in each generation (iteration) new individuals are generated by variation, usually in a stochastic way, of the current parental individuals. Then, some individuals are selected to become the parents in the next generation based on their fitness or objective function value . Like this, over the generation sequence, individuals with better and better -values are generated.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

In queueing theory, a discipline within the mathematical theory of probability, a G-network is an open network of G-queues first introduced by Erol Gelenbe as a model for queueing systems with specific control functions, such as traffic re-routing or traffic destruction, as well as a model for neural networks. A G-queue is a network of queues with several types of novel and useful customers:

In probability theory and statistics, the normal-gamma distribution is a bivariate four-parameter family of continuous probability distributions. It is the conjugate prior of a normal distribution with unknown mean and precision.

In queueing theory, a discipline within the mathematical theory of probability, the Pollaczek–Khinchine formula states a relationship between the queue length and service time distribution Laplace transforms for an M/G/1 queue. The term is also used to refer to the relationships between the mean queue length and mean waiting/service time in such a model.

In probability and statistics, the Tweedie distributions are a family of probability distributions which include the purely continuous normal, gamma and inverse Gaussian distributions, the purely discrete scaled Poisson distribution, and the class of compound Poisson–gamma distributions which have positive mass at zero, but are otherwise continuous. Tweedie distributions are a special case of exponential dispersion models and are often used as distributions for generalized linear models.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

<span class="mw-page-title-main">Poisson distribution</span> Discrete probability distribution

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event. It is named after French mathematician Siméon Denis Poisson. The Poisson distribution can also be used for the number of events in other specified interval types such as distance, area, or volume. It plays an important role for discrete-stable distributions.

<span class="mw-page-title-main">Marchenko–Pastur distribution</span> Distribution of singular values of large rectangular random matrices

In the mathematical theory of random matrices, the Marchenko–Pastur distribution, or Marchenko–Pastur law, describes the asymptotic behavior of singular values of large rectangular random matrices. The theorem is named after Soviet mathematicians Vladimir Marchenko and Leonid Pastur who proved this result in 1967.

In probability theory and statistics, the noncentral beta distribution is a continuous probability distribution that is a noncentral generalization of the (central) beta distribution.

In mathematics, the Fox–Wright function (also known as Fox–Wright Psi function, not to be confused with Wright Omega function) is a generalisation of the generalised hypergeometric function pFq(z) based on ideas of Charles Fox (1928) and E. Maitland Wright (1935):

<span class="mw-page-title-main">Voter model</span>

In the mathematical theory of probability, the voter model is an interacting particle system introduced by Richard A. Holley and Thomas M. Liggett in 1975.

References

  1. Paul T. Willis; Frank Marks; John Gottschalck (2006). "Rain Drop Size Distributions and Radar Rain Measurements in South Florida".
  2. Williams, Christopher R.; al. (May 2014). "Describing the Shape of Raindrop Size Distributions Using Uncorrelated Raindrop Mass Spectrum Parameters". Journal of Applied Meteorology and Climatology. 53 (5): 1282–1296. Bibcode:2014JApMC..53.1282W. doi: 10.1175/JAMC-D-13-076.1 . ISSN   1558-8424.
  3. 1 2 3 Ulbrich, Carlton W. (1983). "Natural variation in the analytical form of the raindrop size distribution". Journal of Climate and Applied Meteorology. 22 (10): 1764–1775. Bibcode:1983JApMe..22.1764U. doi: 10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2 . ISSN   0733-3021.
  4. 1 2 3 4 Marshall, J. S.; Palmer, W. M. (1948). "The distribution of raindrops with size". Journal of Meteorology. 5 (4): 165–166. Bibcode:1948JAtS....5..165M. doi: 10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2 . ISSN   1520-0469.
  5. "La mesure de la hauteur de précipitation grâce à la réflectivité radar". Glossaire météorologique (in French). Météo-France . Retrieved 2009-03-12.
  6. 1 2 National Weather Service. "Recommended Parameter Changes to Improve WSR-88D Rainfall Estimates During Cool Season Stratiform Rain Events". NOAA. Archived from the original on 2008-07-04. Retrieved 2009-03-12.

See also