An automatic weather station (AWS) is an automated version of the traditional weather station, either to save human labor or to enable measurements from remote areas. [1] An AWS will typically consist of a weather-proof enclosure containing the data logger, rechargeable battery, telemetry (optional) and the meteorological sensors with an attached solar panel or wind turbine and mounted upon a mast. The specific configuration may vary due to the purpose of the system. [1] The system may report in near real time via the Argos System, LoRa and the Global Telecommunications System, [2] or save the data for later recovery. [3]
In the past, automatic weather stations were often placed where electricity and communication lines were available. Nowadays, the solar panel, wind turbine and mobile phone technology have made it possible to have wireless stations that are not connected to the electrical grid or hardline telecommunications network. [4]
One of the main advantages of an automatic weather station is that it can provide accurate and reliable weather data in remote, inaccessible or hazardous locations. The AWS can be programmed to alert authorities in case of severe weather events.
Most automatic weather stations have [1] [5]
Some stations can also have [4]
Unlike manual weather stations, automated airport weather stations cannot report the class and amount of clouds. Also, precipitation measurements are difficult, especially for snow, as the gauge must empty itself between observations. For present weather, all phenomena that do not touch the sensor, such as fog patches, remain unobserved. [1] The change from manual observations to automatic weather stations is a major non-climatic change in the climate record. [6] The change in instrumentation, enclosure and location can lead to a jump in, for example, the measured temperature or precipitation values, which can lead to erroneous estimates of climate trends. This change, and related non-climatic changes, have to be removed by homogenization.
The data-logger is the heart of the Automatic Weather Station.
In high quality weather stations, the data-logger may be designed by the supplier to be the perfect solution for a particular meteorological client. Indeed, usually data-loggers found in the market don't fit the requirement in terms of power consumption, inputs, communication, protection against animals (ants, rats, etc.), humidity, salty air, sand, etc.
The main functions of a data-logger are:
Enclosures used with automatic weather stations are typically weather proof fiberglass, ABS or stainless steel, With ABS being the cheapest, cast aluminium paint [7] or stainless steel the most durable and fiberglass being a compromise. [1]
The main power source for an automatic weather station depends on its usage. Many stations with lower power equipment usually use one or more solar panels connected in parallel with a regulator and one or more rechargeable batteries. As a rule of thumb, solar output is at its optimum for only 5 hours each day. As such, mounting angle and position are vital. In the Northern Hemisphere, the solar panel would be mounted facing south and vice versa for the Southern Hemisphere. The output from the solar panels may be supplemented by a wind turbine to provide power during periods of poor sunlight, or by direct connection to the local electrical grid. Most automated airport weather stations are connected to the commercial power grid due to the higher power needs of the ceilometer and present weather sensors, which are active sensors and emit energy directly into the environment. [4]
The standard mast heights used with automatic weather stations are 2, 3, 10 and 30 meters. Other sizes are available, but typically these sizes have been used as standards for differing applications. [1]
Telemetry is the in situ collection of measurements or other data at remote points and their automatic transmission to receiving equipment (telecommunication) for monitoring. The word is derived from the Greek roots tele, 'remote', and metron, 'measure'. Systems that need external instructions and data to operate require the counterpart of telemetry: telecommand.
A rain gauge is an instrument used by meteorologists and hydrologists to gather and measure the amount of liquid precipitation over a predefined area, over a period of time. It is used to determine the depth of precipitation that occurs over a unit area and measure rainfall amount.
A weather station is a facility, either on land or sea, with instruments and equipment for measuring atmospheric conditions to provide information for weather forecasts and to study the weather and climate. The measurements taken include temperature, atmospheric pressure, humidity, wind speed, wind direction, and precipitation amounts. Wind measurements are taken with as few other obstructions as possible, while temperature and humidity measurements are kept free from direct solar radiation, or insolation. Manual observations are taken at least once daily, while automated measurements are taken at least once an hour. Weather conditions out at sea are taken by ships and buoys, which measure slightly different meteorological quantities such as sea surface temperature (SST), wave height, and wave period. Drifting weather buoys outnumber their moored versions by a significant amount.
A data logger is an electronic device that records data over time or about location either with a built-in instrument or sensor or via external instruments and sensors. Increasingly, but not entirely, they are based on a digital processor, and called digital data loggers (DDL). They generally are small, battery-powered, portable, and equipped with a microprocessor, internal memory for data storage, and sensors. Some data loggers interface with a personal computer and use software to activate the data logger and view and analyze the collected data, while others have a local interface device and can be used as a stand-alone device.
A measurement tower or measurement mast, also known as meteorological tower or meteorological mast, is a free standing tower or a removed mast, which carries measuring instruments with meteorological instruments, such as thermometers and instruments to measure wind speed. Measurement towers are an essential component of rocket launching sites, since one must know exact wind conditions for an execution of a rocket launch. Met masts are crucial in the development of wind farms, as precise knowledge of the wind speed is necessary to know how much energy will be produced, and whether the turbines will survive on the site. Measurement towers are also used in other contexts, for instance near nuclear power stations, and by ASOS stations.
Vaisala Oyj is a Finnish company that produces products and services for environmental and industrial measurement.
A Stevenson screen or instrument shelter is a shelter or an enclosure used to protect meteorological instruments against precipitation and direct heat radiation from outside sources, while still allowing air to circulate freely around them. It forms part of a standard weather station and holds instruments that may include thermometers, a hygrometer, a psychrometer, a dewcell, a barometer, and a thermograph.
This is a list of meteorology topics. The terms relate to meteorology, the interdisciplinary scientific study of the atmosphere that focuses on weather processes and forecasting.
The National Severe Storms Laboratory (NSSL) is a National Oceanic and Atmospheric Administration (NOAA) weather research laboratory under the Office of Oceanic and Atmospheric Research. It is one of seven NOAA Research Laboratories (RLs).
Weather buoys are instruments which collect weather and ocean data within the world's oceans, as well as aid during emergency response to chemical spills, legal proceedings, and engineering design. Moored buoys have been in use since 1951, while drifting buoys have been used since 1979. Moored buoys are connected with the ocean bottom using either chains, nylon, or buoyant polypropylene. With the decline of the weather ship, they have taken a more primary role in measuring conditions over the open seas since the 1970s. During the 1980s and 1990s, a network of buoys in the central and eastern tropical Pacific Ocean helped study the El Niño-Southern Oscillation. Moored weather buoys range from 1.5–12 metres (5–40 ft) in diameter, while drifting buoys are smaller, with diameters of 30–40 centimetres (12–16 in). Drifting buoys are the dominant form of weather buoy in sheer number, with 1250 located worldwide. Wind data from buoys has smaller error than that from ships. There are differences in the values of sea surface temperature measurements between the two platforms as well, relating to the depth of the measurement and whether or not the water is heated by the ship which measures the quantity.
NOAA-18, also known as NOAA-N before launch, is an operational, polar orbiting, weather satellite series operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-18 also continued the series of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983 but with additional new and improved instrumentation over the NOAA A-M series and a new launch vehicle. NOAA-18 is in an afternoon equator-crossing orbit and replaced NOAA-17 as the prime afternoon spacecraft.
Meteorological instruments, including meteorological sensors, are the equipment used to find the state of the atmosphere at a given time. Each science has its own unique sets of laboratory equipment. Meteorology, however, is a science which does not use much laboratory equipment but relies more on on-site observation and remote sensing equipment. In science, an observation, or observable, is an abstract idea that can be measured and for which data can be taken. Rain was one of the first quantities to be measured historically. Two other accurately measured weather-related variables are wind and humidity. Many attempts had been made prior to the 15th century to construct adequate equipment to measure atmospheric variables.
Airport weather stations are automated sensor suites which are designed to serve aviation and meteorological operations, weather forecasting and climatology. Automated airport weather stations have become part of the backbone of weather observing in the United States and Canada and are becoming increasingly more prevalent worldwide due to their efficiency and cost-savings.
The following outline is provided as an overview of and topical guide to the field of Meteorology.
Surface weather observations are the fundamental data used for safety as well as climatological reasons to forecast weather and issue warnings worldwide. They can be taken manually, by a weather observer, by computer through the use of automated weather stations, or in a hybrid scheme using weather observers to augment the otherwise automated weather station. The ICAO defines the International Standard Atmosphere (ISA), which is the model of the standard variation of pressure, temperature, density, and viscosity with altitude in the Earth's atmosphere, and is used to reduce a station pressure to sea level pressure. Airport observations can be transmitted worldwide through the use of the METAR observing code. Personal weather stations taking automated observations can transmit their data to the United States mesonet through the Citizen Weather Observer Program (CWOP), the UK Met Office through their Weather Observations Website (WOW), or internationally through the Weather Underground Internet site. A thirty-year average of a location's weather observations is traditionally used to determine the station's climate. In the US a network of Cooperative Observers make a daily record of summary weather and sometimes water level information.
Wind resource assessment is the process by which wind power developers estimate the future energy production of a wind farm. Accurate wind resource assessments are crucial to the successful development of wind farms.
The Antarctic Automatic Weather Station (AWS) Project is an Antarctic research program at the Space Science and Engineering Center at the University of Wisconsin–Madison that is funded by the Office of Polar Programs at the National Science Foundation (NSF). The AWS project was started in 1980 by UW-Madison atmospheric sciences Professor Charles R. Stearns.
A Road Weather Information System (RWIS) comprises automatic weather stations (AWS) in the field, a communication system for data transfer, and central systems to collect field data from numerous ESS. These stations measure real-time atmospheric parameters, pavement conditions, water level conditions, visibility, and sometimes other variables. Central RWIS hardware and software are used to process observations from ESS to develop nowcasts or forecasts, and to display or disseminate road weather information in a format that can be easily interpreted by a manager. RWIS data are used by road operators and maintainers to support decision making. Real-time RWIS data is also used by Automated Warning Systems (AWS). The spatial and temporal resolution of a station network can be that of a mesonet or sometimes a constituent network in a network of station networks comprising a mesonet. The data is often considered proprietary although it is typically ingested into the major numerical weather prediction models.
Photovoltaic system performance is a function of the climatic conditions, the equipment used and the system configuration. PV performance can be measured as the ratio of actual solar PV system output vs expected values, the measurement being essential for proper solar PV facility's operation and maintenance. The primary energy input is the global light irradiance in the plane of the solar arrays, and this in turn is a combination of the direct and the diffuse radiation.