Argo (oceanography)

Last updated

Argo logo.svg
The distribution of active floats in the Argo array, colour coded by country that owns the float, as of February 2018. Argo floats in Feb. 2018 colour coded by country.png
The distribution of active floats in the Argo array, colour coded by country that owns the float, as of February 2018.

Argo is an international programme for researching the ocean. It uses profiling floats to observe temperature, salinity and currents. Recently it has observed bio-optical properties in the Earth's oceans. It has been operating since the early 2000s. The real-time data it provides support climate and oceanographic research. [1] [2] A special research interest is to quantify the ocean heat content (OHC). The Argo fleet consists of almost 4000 drifting "Argo floats" (as profiling floats used by the Argo program are often called) deployed worldwide. Each float weighs 20–30 kg. In most cases probes drift at a depth of 1000 metres. Experts call this the parking depth. Every 10 days, by changing their buoyancy, they dive to a depth of 2000 metres and then move to the sea-surface. As they move they measure conductivity and temperature profiles as well as pressure. Scientists calculate salinity and density from these measurements. Seawater density is important in determining large-scale motions in the ocean.

Contents

Average current velocities at 1000 metres are directly measured by the distance and direction a float drifts while parked at that depth, which is determined by GPS or Argos system positions at the surface. The data is transmitted to shore via satellite, and is freely available to everyone, without restrictions.

The Argo program is named after the Greek mythical ship Argo to emphasize the complementary relationship of Argo with the Jason satellite altimeters. Both the standard Argo floats and the 4 satellites launched so far to monitor changing sea-level all operate on a 10-day duty cycle.

International collaboration

The Argo program is a collaborative partnership of more than 30 nations from all continents (most shown on the graphic map in this article) that maintains a global array and provides a dataset anyone can use to explore the ocean environment. Argo is a component of the Global Ocean Observing System (GOOS), [3] and is coordinated by the Argo Steering Team, an international body of scientists and technical experts that meets once per year. The Argo data stream is managed by the Argo Data Management Team. Argo is also supported by the Group on Earth Observations, and has been endorsed since its beginnings by the World Climate Research Programme's CLIVAR Project (Variability and predictability of the ocean-atmosphere system), and by the Global Ocean Data Assimilation Experiment (GODAE OceanView).

History

The distribution of active floats in the Argo array, colour coded by country, that carry bio-geochemical sensors as of February 2018. 2018-02-countries-bgc.png
The distribution of active floats in the Argo array, colour coded by country, that carry bio-geochemical sensors as of February 2018.

A program called Argo was first proposed at OceanObs 1999 which was a conference organised by international agencies with the aim of creating a coordinated approach to ocean observations. The original Argo prospectus was created by a small group of scientists, chaired by Dean Roemmich, who described a program that would have a global array of about 3000 floats in place by sometime in 2007. [4] The 3000-float array was achieved in November 2007 and was global. The Argo Steering Team met for the first time in 1999 in Maryland (USA) and outlined the principles of global data sharing.

The Argo Steering Team made a 10-year report to OceanObs-2009 [5] and received suggestions on how the array might be improved. These suggestions included enhancing the array at high latitudes, in marginal seas (such as the Gulf of Mexico and the Mediterranean) and along the equator, improved observation of strong boundary currents (such as the Gulf Stream and Kuroshio), extension of observations into deep water and the addition of sensors for monitoring biological and chemical changes in the oceans. In November 2012 an Indian float in the Argo array gathered the one-millionth profile (twice the number collected by research vessels during all of the 20th century) an event that was reported in several press releases. [6] [7] As can be seen in the plot opposite, by early 2018 the Bio-Argo program is expanding rapidly. [8]

Float design and operation

A schematic diagram showing the general structure of a profiling float as used in Argo BrnBld ArgoFloat.svg
A schematic diagram showing the general structure of a profiling float as used in Argo

The critical capability of an Argo float is its ability to rise and descend in the ocean on a programmed schedule. The floats do this by changing their effective density. The density of any object is given by its mass divided by its volume. The Argo float keeps its mass constant, but by altering its volume, it changes its density. To do this, mineral oil is forced out of the float's pressure case and expands a rubber bladder at the bottom end of the float. As the bladder expands, the float becomes less dense than seawater and rises to the surface. Upon finishing its tasks at the surface, the float withdraws the oil and descends again. [9]

A handful of companies and organizations manufacture profiling floats used in the Argo program. APEX floats, made by Teledyne Webb Research, are the most common element of the current array. SOLO and SOLO-II floats (the latter use a reciprocating pump for buoyancy changes, unlike screw-driven pistons in other floats) were developed at Scripps Institution of Oceanography. Other types include the NINJA float, made by the Tsurumi Seiki Co. of Japan, and the ARVOR, DEEP-ARVOR & PROVOR floats developed by IFREMER in France, in industrial partnership with French Company nke instrumentation. Most floats use sensors made by Sea-Bird Scientific (https://www.seabird.com/) , which also makes a profiling float called Navis. A typical Argo float is a cylinder just over 1 metre long and 14 cm across with a hemispherical cap. Thus it has a minimum volume of about 16,600 cubic centimetres (cm3). At Ocean Station Papa in the Gulf of Alaska the temperature and salinity at the surface might be about 6°C and 32.55 parts per thousand giving a density of sea-water of 1.0256 g/cm3. At a depth of 2000 metres (pressure of 2000 decibars) the temperature might be 2°C and the salinity 34.58 parts per thousand. Thus, including the effect of pressure (water is slightly compressible) the density of sea-water is about 1.0369 g/cm3. The change in density divided by the deep density is 0.0109.

The float has to match these densities if it is to reach 2000 metres depth and then rise to the surface. Since the density of the float is its mass divided by volume, it needs to change its volume by 0.0109 × 16,600 = 181 cm3 to drive that excursion; a small amount of that volume change is provided by the compressibility of the float itself, and excess buoyancy is required at the surface in order to keep the antenna above water. All Argo floats carry sensors to measure the temperature and salinity of the ocean as they vary with depth, but an increasing number of floats also carry other sensors, such as for measuring dissolved oxygen and ultimately other variables of biological and chemical interest such as chlorophyll, nutrients and pH. An extension to the Argo project called BioArgo is being developed and, when implemented, will add a biological and chemical component to this method of sampling the oceans. [10]

The antenna for satellite data collection is mounted at the top of the float which extends clear of the sea surface after it completes its ascent. The ocean is saline, hence an electrical conductor, so that radio communications from under the sea surface are not possible. Early in the program Argo floats exclusively used slow mono-directional satellite communications but the majority of floats being deployed in mid-2013 use rapid bi-directional communications. The result of this is that Argo floats now transmit much more data than was previously possible and they spend only about 20 minutes on the sea surface rather than 8–12 hours, greatly reducing problems such as grounding and bio-fouling.

The average life span of Argo floats has increased greatly since the program began, first exceeding 4-year mean lifetime for floats deployed in 2005. Ongoing improvements should result in further extensions to 6 years and longer.

As of June 2014, [11] new types of floats were being tested to collect measurements much deeper than can be reached by standard Argo floats. These "Deep Argo" floats are designed to reach depths of 4000 or 6000 metres, versus 2000 metres for standard floats. This will allow a much greater volume of the ocean to be sampled. Such measurements are important for developing a comprehensive understanding of the ocean, such as trends in heat content. [12] [13]

Array design

Number of profiles gathered by Argo floats south of 30degS (upper curve) through 2012, compared with available profiles gathered by other means (lower) in that period. This shows the near elimination of seasonal bias. Argo FloatsByMonth.jpg
Number of profiles gathered by Argo floats south of 30°S (upper curve) through 2012, compared with available profiles gathered by other means (lower) in that period. This shows the near elimination of seasonal bias.

The original plan advertised in the Argo prospectus called for a nearest-neighbour distance between floats, on average, of 3° latitude by 3° longitude. [4] This allowed for higher resolution (in kilometres) at high latitudes, both north and south, and was considered necessary because of the decrease in the Rossby radius of deformation which governs the scale of oceanographic features, such as eddies. By 2007 this was largely achieved, but the target resolution has never yet been completely achieved in the deep southern ocean.

Efforts are being made to complete the original plan in all parts of the world oceans but this is difficult in the deep Southern Ocean as deployment opportunities occur only very rarely.

As mentioned in the history section, enhancements are now planned in the equatorial regions of the oceans, in boundary currents and in marginal seas. This requires that the total number of floats be increased from the original plan of 3000 floats to a 4000-float array.

One consequence of the use of profiling floats to sample the ocean is that seasonal bias can be removed. The diagram opposite shows the count of all float profiles acquired each month by Argo south of 30°S (upper curve) from the start of the program to November 2012 compared with the same diagram for all other data available. The lower curve shows a strong annual bias with four times as many profiles being collected in austral summer than in austral winter. For the upper (Argo) plot, there is no bias apparent.

Data access

A section of salinity along the date line computed from Argo data using the Global Marine Atlas. Argo SaltSection.jpg
A section of salinity along the date line computed from Argo data using the Global Marine Atlas.

One of the critical features of the Argo model is that of global and unrestricted access to data in near real-time. When a float transmits a profile it is quickly converted to a format that can be inserted on the Global Telecommunications System (GTS). The GTS is operated by the World Meteorological Organisation, or WMO, specifically for the purpose of sharing data needed for weather forecasting. Thus all nations who are members of the WMO receive all Argo profiles within a few hours of the acquisition of the profile. Data are also made available through ftp and WWW access via two Argo Global Data Centres (or GDACs), one in France and one in the US.

About 90% of all profiles acquired are made available to global access within 24 hours, with the remaining profiles becoming available soon thereafter.

For a researcher to use data acquired via the GTS or from the Argo Global Data Centres (GDACs) does require programming skills. The GDACs supply multi-profile files that are a native file format for Ocean DataView. For any day there are files with names like 20121106_prof.nc that are called multi-profile files. This example is a file specific to 6 November 2012 and contains all profiles in a single NetCDF file for one ocean basin. The GDACs identify three ocean basins, Atlantic, Indian and Pacific. Thus three multi-profile files will carry every Argo profile acquired on that specific day.

A user who wants to explore Argo data but lacks programming skills might like to download the Argo Global Marine Atlas [14] which is an easy-to-use utility that allows the creation of products based on Argo data such as the salinity section shown above, but also horizontal maps of ocean properties, time series at any location etc. This Atlas also carries an "update" button that allows data to be updated periodically. The Argo Global Marine Atlas is maintained at the Scripps Institution of Oceanography in La Jolla, California.

Argo data can also be displayed in Google Earth with a layer developed by the Argo Technical Coordinator.

Data results

The number of papers, by year, published in refereed journals and that are extensively or totally dependent on the availability of Argo data as of 26 March 2018. PapersByYearMar2018.png
The number of papers, by year, published in refereed journals and that are extensively or totally dependent on the availability of Argo data as of 26 March 2018.

Argo is now the dominant source of information about the climatic state of the oceans and is being widely used in many publications as seen in the diagram opposite. Topics addressed include air-sea interaction, ocean currents, interannual variability, El Niño, mesoscale eddies, water mass properties and transformation. Argo is also now permitting direct computations of the global ocean heat content.

They determine that areas of the world with high surface salinity are getting saltier and areas of the world with relatively low surface salinity are getting fresher. This has been described as 'the rich get richer and the poor get poorer'. Scientifically speaking, the distributions of salt are governed by the difference between precipitation and evaporation. Areas, such as the northern North Pacific Ocean, where precipitation dominates evaporation are fresher than average. The implication of their result is that the Earth is seeing an intensification of the global hydrological cycle. Argo data are also being used to drive computer models of the climate system leading to improvements in the ability of nations to forecast seasonal climate variations. [15]

Argo data were critical in the drafting of Chapter 3 (Working Group 1) of the IPCC Fifth Assessment Report (released September 2013) and an appendix was added to that chapter to emphasize the profound change that had taken place in the quality and volume of ocean data since the IPCC Fourth Assessment Report and the resulting improvement in confidence in the description of surface salinity changes and upper-ocean heat content.

Argo data were used along with sea level change data from satellite altimetry in a new approach to analyzing global warming, reported in Eos in 2017. David Morrison reports that "[b]oth of these data sets show clear signatures of heat deposition in the ocean, from the temperature changes in the top 2 km of water and from the expansion of the ocean water due to heating. These two measures are less noisy than land and atmospheric temperatures." [16]

Argo and CERES data collected between 2005 and 2019 have been compared as independent measures of the global change in Earth's energy imbalance. Both data sets showed similar behavior at annualized resolution, as well as a doubling of the linear trend in planet's heating rate during that 14-year span. [17]

See also

Related Research Articles

<span class="mw-page-title-main">Thermohaline circulation</span> Part of large-scale ocean circulation

Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes. The adjective thermohaline derives from thermo- referring to temperature and -haline referring to salt content, factors which together determine the density of sea water. Wind-driven surface currents travel polewards from the equatorial Atlantic Ocean, cooling en route, and eventually sinking at high latitudes. This dense water then flows into the ocean basins. While the bulk of it upwells in the Southern Ocean, the oldest waters upwell in the North Pacific. Extensive mixing therefore takes place between the ocean basins, reducing differences between them and making the Earth's oceans a global system. The water in these circuits transport both energy and mass around the globe. As such, the state of the circulation has a large impact on the climate of the Earth.

<span class="mw-page-title-main">Underwater glider</span> Type of autonomous underwater vehicle

An underwater glider is a type of autonomous underwater vehicle (AUV) that employs variable-buoyancy propulsion instead of traditional propellers or thrusters. It employs variable buoyancy in a similar way to a profiling float, but unlike a float, which can move only up and down, an underwater glider is fitted with hydrofoils that allow it to glide forward while descending through the water. At a certain depth, the glider switches to positive buoyancy to climb back up and forward, and the cycle is then repeated.

<span class="mw-page-title-main">Ocean acoustic tomography</span> Technique used to measure temperatures and currents over large regions of the ocean

Ocean acoustic tomography is a technique used to measure temperatures and currents over large regions of the ocean. On ocean basin scales, this technique is also known as acoustic thermometry. The technique relies on precisely measuring the time it takes sound signals to travel between two instruments, one an acoustic source and one a receiver, separated by ranges of 100–5,000 kilometres (54–2,700 nmi). If the locations of the instruments are known precisely, the measurement of time-of-flight can be used to infer the speed of sound, averaged over the acoustic path. Changes in the speed of sound are primarily caused by changes in the temperature of the ocean, hence the measurement of the travel times is equivalent to a measurement of temperature. A 1 °C (1.8 °F) change in temperature corresponds to about 4 metres per second (13 ft/s) change in sound speed. An oceanographic experiment employing tomography typically uses several source-receiver pairs in a moored array that measures an area of ocean.

The World Ocean Circulation Experiment (WOCE) was a component of the international World Climate Research Program, and aimed to establish the role of the World Ocean in the Earth's climate system. WOCE's field phase ran between 1990 and 1998, and was followed by an analysis and modeling phase that ran until 2002. When the WOCE was conceived, there were three main motivations for its creation. The first of these is the inadequate coverage of the World Ocean, specifically in the Southern Hemisphere. Data was also much more sparse during the winter months than the summer months, and there was—and still to some extent—a critical need for data covering all seasons. Secondly, the data that did exist was not initially collected for studying ocean circulation and was not well suited for model comparison. Lastly, there were concerns involving the accuracy and reliability of some measurements. The WOCE was meant to address these problems by providing new data collected in ways designed to "meet the needs of global circulation models for climate prediction."

<span class="mw-page-title-main">Weather buoy</span> Floating instrument package which collects weather and ocean data on the worlds oceans

Weather buoys are instruments which collect weather and ocean data within the world's oceans, as well as aid during emergency response to chemical spills, legal proceedings, and engineering design. Moored buoys have been in use since 1951, while drifting buoys have been used since 1979. Moored buoys are connected with the ocean bottom using either chains, nylon, or buoyant polypropylene. With the decline of the weather ship, they have taken a more primary role in measuring conditions over the open seas since the 1970s. During the 1980s and 1990s, a network of buoys in the central and eastern tropical Pacific Ocean helped study the El Niño-Southern Oscillation. Moored weather buoys range from 1.5–12 metres (5–40 ft) in diameter, while drifting buoys are smaller, with diameters of 30–40 centimetres (12–16 in). Drifting buoys are the dominant form of weather buoy in sheer number, with 1250 located worldwide. Wind data from buoys has smaller error than that from ships. There are differences in the values of sea surface temperature measurements between the two platforms as well, relating to the depth of the measurement and whether or not the water is heated by the ship which measures the quantity.

A mooring in oceanography is a collection of devices connected to a wire and anchored on the sea floor. It is the Eulerian way of measuring ocean currents, since a mooring is stationary at a fixed location. In contrast to that, the Lagrangian way measures the motion of an oceanographic drifter, the Lagrangian drifter.

<span class="mw-page-title-main">Aquarius (SAC-D instrument)</span> NASA instrument aboard the Argentine SAC-D spacecraft

Aquarius was a NASA instrument aboard the Argentine SAC-D spacecraft. Its mission was to measure global sea surface salinity to better predict future climate conditions.

<span class="mw-page-title-main">Ocean heat content</span> Thermal energy stored in ocean water

Ocean heat content (OHC) is the energy absorbed and stored by oceans. To calculate the ocean heat content, it is necessary to measure ocean temperature at many different locations and depths. Integrating the areal density of ocean heat over an ocean basin or entire ocean gives the total ocean heat content. Between 1971 and 2018, the rise in ocean heat content accounted for over 90% of Earth’s excess thermal energy from global heating. The main driver of this increase was anthropogenic forcing via rising greenhouse gas emissions. By 2020, about one third of the added energy had propagated to depths below 700 meters. In 2022, the world’s oceans were again the hottest in the historical record and exceeded the previous 2021 record maximum. The four highest ocean heat observations occurred in the period 2019–2022. The North Pacific, North Atlantic, the Mediterranean, and the Southern Ocean all recorded their highest heat observations for more than sixty years. Ocean heat content and sea level rise are important indicators of climate change.

<span class="mw-page-title-main">Drifter (oceanography)</span> Oceanographic instrument package floating freely on the surface, transported by currents

A drifter is an oceanographic device floating on the surface to investigate ocean currents by tracking location. They can also measure other parameters like sea surface temperature, salinity, barometric pressure, and wave height. Modern drifters are typically tracked by satellite, often GPS. They are sometimes called Lagrangian drifters since the location of the measurements they make moves with the flow. A major user of drifters is NOAA's Global Drifter Program.

The following are considered ocean essential climate variables (ECVs) by the Ocean Observations Panel for Climate (OOPC) that are currently feasible with current observational systems.

RAFOS floats are submersible devices used to map ocean currents well below the surface. They drift with these deep currents and listen for acoustic "pongs" emitted at designated times from multiple moored sound sources. By analyzing the time required for each pong to reach a float, researchers can pinpoint its position by triangulation. The floats are able to detect the pongs at ranges of hundreds of kilometers because they generally target a range of depths known as the SOFAR channel, which acts as a waveguide for sound. The name "RAFOS" derives from the earlier SOFAR floats, which emitted sounds that moored receivers picked up, allowing real-time underwater tracking. When the transmit and receive roles were reversed, so was the name: RAFOS is SOFAR spelled backward. Listening for sound requires far less energy than transmitting it, so RAFOS floats are cheaper and longer lasting than their predecessors, but they do not provide information in real-time: instead they store it on board, and upon completing their mission, drop a weight, rise to the surface, and transmit the data to shore by satellite.

<span class="mw-page-title-main">Ocean temperature</span> Physical quantity that expresses hot and cold in ocean water

The ocean temperature varies by depth, geographical location and season. Both the temperature and salinity of ocean water differs. Warm surface water is generally saltier than the cooler deep or polar waters; in polar regions, the upper layers of ocean water are cold and fresh. Deep ocean water is cold, salty water found deep below the surface of Earth's oceans. This water has a very uniform temperature, around 0-3 °C. The ocean temperature also depends on the amount of solar radiation falling on its surface. In the tropics, with the Sun nearly overhead, the temperature of the surface layers can rise to over 30 °C (86 °F) while near the poles the temperature in equilibrium with the sea ice is about −2 °C (28 °F). There is a continuous circulation of water in the oceans. Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes. Warm surface currents cool as they move away from the tropics, and the water becomes denser and sinks. The cold water moves back towards the equator as a deep sea current, driven by changes in the temperature and density of the water, before eventually welling up again towards the surface.

The SOLO-TREC is a profiling float that uses a novel thermal recharging engine powered by the natural temperature differences found at different ocean depths to cycle up and down in the ocean. The research and prototype were developed by researchers at the Jet Propulsion Laboratory in Pasadena, CA, and the Scripps Institution of Oceanography in San Diego, CA. The project name stands for "Sounding Oceanographic Lagrangrian Observer Thermal RECharging" vehicle.

<span class="mw-page-title-main">CORA dataset</span> Oceanographic temperature and salinity dataset

CORA is a global oceanographic temperature and salinity dataset produced and maintained by the French institute IFREMER. Most of those data are real-time data coming from different types of platforms such as research vessels, profilers, underwater gliders, drifting buoys, moored buoys, sea mammals and ships of opportunity.

The Tropical Atmosphere Ocean (TAO) project is a major international effort that instrumented the entire tropical Pacific Ocean with approximately 70 deep ocean moorings. The development of the TAO array in 1985 was motivated by the 1982-1983 El Niño event and ultimately designed for the study of year-to-year climate variations related to El Niño and the Southern Oscillation (ENSO). Led by the TAO Project Office of the Pacific Marine Environmental Laboratory (PMEL), the full array of 70 moorings was completed in 1994.

The Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) is a system of moored observation buoys in the Indian Ocean that collects meteorological and oceanographic data. The data collected by RAMA will greatly enhance the ability of scientists to understand climatic events and predict monsoon events. Climatic and oceanic events in the Indian Ocean affect weather and climate throughout the rest of the world, so RAMA will support weather forecasting and climate research worldwide. Although widely supported internationally, the system has only been partially implemented due to pirate activity off the coast of Somalia.

<span class="mw-page-title-main">Float (oceanography)</span> Oceanographic instrument platform used for making subsurface measurements in the ocean

A float is an oceanographic instrument platform used for making subsurface measurements in the ocean without the need for a ship, propeller, or a person operating it. Floats measure the physical and chemical aspects of the ocean in detail, such as measuring the direction and speed of water or the temperature and salinity. A float will descend to a predetermined depth where it will be neutrally buoyant. Once a certain amount of time has passed, most floats will rise back to the surface by increasing its buoyancy so it can transmit the data it collected to a satellite. A float can collect data while it is neutrally buoyant or moving through the water column. Often, floats are treated as disposable, as the expense of recovering them from remote areas of the ocean is prohibitive; when the batteries fail, a float ceases to function, and drifts at depth until it runs aground or floods and sinks. In other cases, floats are deployed for a short time and recovered.

<span class="mw-page-title-main">Global Drifter Program</span> Program measuring ocean currents, temperatures and atmospheric pressure using drifters

The Global Drifter Program (GDP) was conceived by Prof. Peter Niiler, with the objective of collecting measurements of surface ocean currents, sea surface temperature and sea-level atmospheric pressure using drifters. It is the principal component of the Global Surface Drifting Buoy Array, a branch of NOAA's Global Ocean Observations and a scientific project of the Data Buoy Cooperation Panel (DBCP). The project originated in February 1979 as part of the TOGA/Equatorial Pacific Ocean Circulation Experiment (EPOCS) and the first large-scale deployment of drifters was in 1988 with the goal of mapping the tropical Pacific Ocean's surface circulation. The current goal of the project is to use 1250 satellite-tracked surface drifting buoys to make accurate and globally dense in-situ observations of mixed layer currents, sea surface temperature, atmospheric pressure, winds and salinity, and to create a system to process the data. Horizontal transports in the oceanic mixed layer measured by the GDP are relevant to biological and chemical processes as well as physical ones.

The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project is a large scale National Science Foundation funded research project based at Princeton University that started in September 2014. The project aims to increase the understanding of the Southern Ocean and the role it plays in factors such as climate, as well as educate new scientists with oceanic observation.

<span class="mw-page-title-main">MERMAID</span>

MERMAID is a marine scientific instrument platform, short for Mobile Earthquake Recorder for Marine Areas by Independent Divers.

References

  1. Argo Begins Systematic Global Probing of the Upper Oceans Toni Feder, Phys. Today 53, 50 (2000), Archived 11 July 2007 at the Wayback Machine doi : 10.1063/1.1292477
  2. Richard Stenger (19 September 2000). "Flotilla of sensors to monitor world's oceans". CNN. Archived from the original on 6 November 2007.
  3. "About Argo". Argo: part of the integrated global observation strategy. University of California, San Diego. Retrieved 15 February 2015.
  4. 1 2 Roemmich, Dean; et al. "On The Design and Implementation of Argo" (PDF). UCSD. Archived from the original (PDF) on 20 June 2013. Retrieved 8 October 2014.
  5. "ARGO – A DECADE OF PROGRESS" (PDF).
  6. "One million Argo profiles". British Oceanographic Data Centre. 2 November 2012. Archived from the original on 17 October 2013. Retrieved 8 October 2014.
  7. "Argo collects its one millionth observation". UNESCO. 21 January 2013. Retrieved 8 October 2014.
  8. Davidson, Helen (30 January 2014). "Scientists to launch bio robots in Indian Ocean to study its 'interior biology'". The Guardian . Retrieved 8 October 2014.
  9. "How Argo floats work". UCSD. Archived from the original on 29 September 2013. Retrieved 8 October 2014.
  10. Archived 17 October 2013 at the Wayback Machine
  11. Administration, US Department of Commerce, National Oceanic and Atmospheric. "Deep Argo". oceantoday.noaa.gov. Retrieved 16 January 2018.{{cite web}}: CS1 maint: multiple names: authors list (link)
  12. "Deep Argo: Diving for Answers in the Ocean's Abyss". www.climate.gov. 2015. Retrieved 6 February 2016.
  13. "Uncovering The Deepest Ocean Data With Deep Argo". www.paulallen.com. 7 September 2017. Archived from the original on 9 December 2018. Retrieved 6 February 2016.
  14. Scanderbeg, Megan (September 2014). "Argo Global Marine Atlas". UCSD. Archived from the original on 8 May 2013. Retrieved 8 October 2014.
  15. "GODAE OceanView". Archived from the original on 4 May 2020. Retrieved 8 October 2014.
  16. Morrison, David (2018). "Oceans of Data: New Ways to Measure Global Warming". Skeptical Inquirer . 42 (1): 6.
  17. Loeb, Norman G.; Johnson, Gregory C.; Thorsen, Tyler J.; Lyman, John M.; et al. (15 June 2021). "Satellite and Ocean Data Reveal Marked Increase in Earth's Heating Rate". Geophysical Research Letters. 48 (13). Bibcode:2021GeoRL..4893047L. doi: 10.1029/2021GL093047 .