For a pure wave motion in fluid dynamics, the Stokes drift velocity is the average velocity when following a specific fluid parcel as it travels with the fluid flow. For instance, a particle floating at the free surface of water waves, experiences a net Stokes drift velocity in the direction of wave propagation.
More generally, the Stokes drift velocity is the difference between the average Lagrangian flow velocity of a fluid parcel, and the average Eulerian flow velocity of the fluid at a fixed position. This nonlinear phenomenon is named after George Gabriel Stokes, who derived expressions for this drift in his 1847 study of water waves.
The Stokes drift is the difference in end positions, after a predefined amount of time (usually one wave period), as derived from a description in the Lagrangian and Eulerian coordinates. The end position in the Lagrangian description is obtained by following a specific fluid parcel during the time interval. The corresponding end position in the Eulerian description is obtained by integrating the flow velocity at a fixed position—equal to the initial position in the Lagrangian description—during the same time interval.
The Stokes drift velocity equals the Stokes drift divided by the considered time interval. Often, the Stokes drift velocity is loosely referred to as Stokes drift. Stokes drift may occur in all instances of oscillatory flow which are inhomogeneous in space. For instance in water waves, tides and atmospheric waves.
In the Lagrangian description, fluid parcels may drift far from their initial positions. As a result, the unambiguous definition of an average Lagrangian velocity and Stokes drift velocity, which can be attributed to a certain fixed position, is by no means a trivial task. However, such an unambiguous description is provided by the Generalized Lagrangian Mean (GLM) theory of Andrews and McIntyre in 1978. [2]
The Stokes drift is important for the mass transfer of various kinds of material and organisms by oscillatory flows. It plays a crucial role in the generation of Langmuir circulations. [3] For nonlinear and periodic water waves, accurate results on the Stokes drift have been computed and tabulated. [4]
The Lagrangian motion of a fluid parcel with position vector x = ξ(α, t) in the Eulerian coordinates is given by [5]
where
Often, the Lagrangian coordinates α are chosen to coincide with the Eulerian coordinates x at the initial time t = t0: [5]
If the average value of a quantity is denoted by an overbar, then the average Eulerian velocity vector ūE and average Lagrangian velocity vector ūL are
Different definitions of the average may be used, depending on the subject of study (see ergodic theory):
The Stokes drift velocity ūS is defined as the difference between the average Eulerian velocity and the average Lagrangian velocity: [6]
In many situations, the mapping of average quantities from some Eulerian position x to a corresponding Lagrangian position α forms a problem. Since a fluid parcel with label α traverses along a path of many different Eulerian positions x, it is not possible to assign α to a unique x. A mathematically sound basis for an unambiguous mapping between average Lagrangian and Eulerian quantities is provided by the theory of the generalized Lagrangian mean (GLM) by Andrews and McIntyre (1978).
For the Eulerian velocity as a monochromatic wave of any nature in a continuous medium: one readily obtains by the perturbation theory – with as a small parameter – for the particle position :
Here the last term describes the Stokes drift velocity [7]
The Stokes drift was formulated for water waves by George Gabriel Stokes in 1847. For simplicity, the case of infinitely deep water is considered, with linear wave propagation of a sinusoidal wave on the free surface of a fluid layer: [8]
where
As derived below, the horizontal component ūS(z) of the Stokes drift velocity for deep-water waves is approximately: [9]
As can be seen, the Stokes drift velocity ūS is a nonlinear quantity in terms of the wave amplitude a. Further, the Stokes drift velocity decays exponentially with depth: at a depth of a quarter wavelength, z = −λ/4, it is about 4% of its value at the mean free surface, z = 0.
It is assumed that the waves are of infinitesimal amplitude and the free surface oscillates around the mean level z = 0. The waves propagate under the action of gravity, with a constant acceleration vector by gravity (pointing downward in the negative z direction). Further the fluid is assumed to be inviscid [10] and incompressible, with a constant mass density. The fluid flow is irrotational. At infinite depth, the fluid is taken to be at rest.
Now the flow may be represented by a velocity potential φ, satisfying the Laplace equation and [8]
In order to have non-trivial solutions for this eigenvalue problem, the wave length and wave period may not be chosen arbitrarily, but must satisfy the deep-water dispersion relation: [11]
with g the acceleration by gravity in (m/s2). Within the framework of linear theory, the horizontal and vertical components, ξx and ξz respectively, of the Lagrangian position ξ are [9]
The horizontal component ūS of the Stokes drift velocity is estimated by using a Taylor expansion around x of the Eulerian horizontal velocity component ux = ∂ξx / ∂t at the position ξ: [5]
Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a continuous medium rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such models in the 19th century.
The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).
In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.
The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid. The governing equation is:
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.
In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.
In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.
The Navier–Stokes existence and smoothness problem concerns the mathematical properties of solutions to the Navier–Stokes equations, a system of partial differential equations that describe the motion of a fluid in space. Solutions to the Navier–Stokes equations are used in many practical applications. However, theoretical understanding of the solutions to these equations is incomplete. In particular, solutions of the Navier–Stokes equations often include turbulence, which remains one of the greatest unsolved problems in physics, despite its immense importance in science and engineering.
Conservation form or Eulerian form refers to an arrangement of an equation or system of equations, usually representing a hyperbolic system, that emphasizes that a property represented is conserved, i.e. a type of continuity equation. The term is usually used in the context of continuum mechanics.
The derivation of the Navier–Stokes equations as well as their application and formulation for different families of fluids, is an important exercise in fluid dynamics with applications in mechanical engineering, physics, chemistry, heat transfer, and electrical engineering. A proof explaining the properties and bounds of the equations, such as Navier–Stokes existence and smoothness, is one of the important unsolved problems in mathematics.
In fluid dynamics, a Stokes wave is a nonlinear and periodic surface wave on an inviscid fluid layer of constant mean depth. This type of modelling has its origins in the mid 19th century when Sir George Stokes – using a perturbation series approach, now known as the Stokes expansion – obtained approximate solutions for nonlinear wave motion.
In fluid dynamics, the Taylor–Green vortex is an unsteady flow of a decaying vortex, which has an exact closed form solution of the incompressible Navier–Stokes equations in Cartesian coordinates. It is named after the British physicist and mathematician Geoffrey Ingram Taylor and his collaborator A. E. Green.
Acoustic streaming is a steady flow in a fluid driven by the absorption of high amplitude acoustic oscillations. This phenomenon can be observed near sound emitters, or in the standing waves within a Kundt's tube. Acoustic streaming was explained first by Lord Rayleigh in 1884. It is the less-known opposite of sound generation by a flow.
In fluid dynamics, Airy wave theory gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.
In fluid dynamics, the mild-slope equation describes the combined effects of diffraction and refraction for water waves propagating over bathymetry and due to lateral boundaries—like breakwaters and coastlines. It is an approximate model, deriving its name from being originally developed for wave propagation over mild slopes of the sea floor. The mild-slope equation is often used in coastal engineering to compute the wave-field changes near harbours and coasts.
In fluid dynamics, the radiation stress is the depth-integrated – and thereafter phase-averaged – excess momentum flux caused by the presence of the surface gravity waves, which is exerted on the mean flow. The radiation stresses behave as a second-order tensor.
In fluid dynamics, a trochoidal wave or Gerstner wave is an exact solution of the Euler equations for periodic surface gravity waves. It describes a progressive wave of permanent form on the surface of an incompressible fluid of infinite depth. The free surface of this wave solution is an inverted (upside-down) trochoid – with sharper crests and flat troughs. This wave solution was discovered by Gerstner in 1802, and rediscovered independently by Rankine in 1863.
In continuum mechanics, Whitham's averaged Lagrangian method – or in short Whitham's method – is used to study the Lagrangian dynamics of slowly-varying wave trains in an inhomogeneous (moving) medium. The method is applicable to both linear and non-linear systems. As a direct consequence of the averaging used in the method, wave action is a conserved property of the wave motion. In contrast, the wave energy is not necessarily conserved, due to the exchange of energy with the mean motion. However the total energy, the sum of the energies in the wave motion and the mean motion, will be conserved for a time-invariant Lagrangian. Further, the averaged Lagrangian has a strong relation to the dispersion relation of the system.
In fluid dynamics, Beltrami flows are flows in which the vorticity vector and the velocity vector are parallel to each other. In other words, Beltrami flow is a flow in which the Lamb vector is zero. It is named after the Italian mathematician Eugenio Beltrami due to his derivation of the Beltrami vector field, while initial developments in fluid dynamics were done by the Russian scientist Ippolit S. Gromeka in 1881.