Wave action (continuum mechanics)

Last updated
Five-day forecast of the significant wave height for the North Atlantic on November 22, 2008, by NOAA's Wavewatch III model. This wind wave model generates forecasts of wave conditions through the use of wave-action conservation and the wind-field forecasts (from weather forecasting models). NOAA Wavewatch III Sample Forecast.gif
Five-day forecast of the significant wave height for the North Atlantic on November 22, 2008, by NOAA's Wavewatch III model. This wind wave model generates forecasts of wave conditions through the use of wave-action conservation and the wind-field forecasts (from weather forecasting models).

In continuum mechanics, wave action refers to a conservable measure of the wave part of a motion. [2] For small-amplitude and slowly varying waves, the wave action density is: [3]

where is the intrinsic wave energy and is the intrinsic frequency of the slowly modulated waves – intrinsic here implying: as observed in a frame of reference moving with the mean velocity of the motion. [4]

The action of a wave was introduced by Sturrock (1962) in the study of the (pseudo) energy and momentum of waves in plasmas. Whitham (1965) derived the conservation of wave action – identified as an adiabatic invariant – from an averaged Lagrangian description of slowly varying nonlinear [ disambiguation needed ] wave trains in inhomogeneous media:

where is the wave-action density flux and is the divergence of . The description of waves in inhomogeneous and moving media was further elaborated by Bretherton & Garrett (1968) for the case of small-amplitude waves; they also called the quantity wave action (by which name it has been referred to subsequently). For small-amplitude waves the conservation of wave action becomes: [3] [4]

  using    and  

where is the group velocity and the mean velocity of the inhomogeneous moving medium. While the total energy (the sum of the energies of the mean motion and of the wave motion) is conserved for a non-dissipative system, the energy of the wave motion is not conserved, since in general there can be an exchange of energy with the mean motion. However, wave action is a quantity which is conserved for the wave-part of the motion.

The equation for the conservation of wave action is for instance used extensively in wind wave models to forecast sea states as needed by mariners, the offshore industry and for coastal defense. Also in plasma physics and acoustics the concept of wave action is used.

The derivation of an exact wave-action equation for more general wave motion – not limited to slowly modulated waves, small-amplitude waves or (non-dissipative) conservative systems – was provided and analysed by Andrews & McIntyre (1978) using the framework of the generalised Lagrangian mean for the separation of wave and mean motion. [4]

Notes

  1. WAVEWATCH III Model, National Weather Service, NOAA , retrieved 2013-11-14
  2. Andrews & McIntyre (1978)
  3. 1 2 Bretherton & Garrett (1968)
  4. 1 2 3 Craik (1988 , pp. 98–110)

Related Research Articles

Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a continuous medium rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such models in the 19th century.

The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid. The governing equation is:

<span class="mw-page-title-main">Hamiltonian mechanics</span> Formulation of classical mechanics using momenta

In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena.

<span class="mw-page-title-main">Smoothed-particle hydrodynamics</span> Method of hydrodynamics simulation

Smoothed-particle hydrodynamics (SPH) is a computational method used for simulating the mechanics of continuum media, such as solid mechanics and fluid flows. It was developed by Gingold and Monaghan and Lucy in 1977, initially for astrophysical problems. It has been used in many fields of research, including astrophysics, ballistics, volcanology, and oceanography. It is a meshfree Lagrangian method, and the resolution of the method can easily be adjusted with respect to variables such as density.

In fluid dynamics, dispersion of water waves generally refers to frequency dispersion, which means that waves of different wavelengths travel at different phase speeds. Water waves, in this context, are waves propagating on the water surface, with gravity and surface tension as the restoring forces. As a result, water with a free surface is generally considered to be a dispersive medium.

In fluid dynamics, the enstrophy can be interpreted as another type of potential density; or, more concretely, the quantity directly related to the kinetic energy in the flow model that corresponds to dissipation effects in the fluid. It is particularly useful in the study of turbulent flows, and is often identified in the study of thrusters as well as in combustion theory and meteorology.

In fluid mechanics, Kelvin's circulation theorem states:

In a barotropic, ideal fluid with conservative body forces, the circulation around a closed curve moving with the fluid remains constant with time.

<span class="mw-page-title-main">Stokes drift</span> Average velocity of a fluid parcel in a gravity wave

For a pure wave motion in fluid dynamics, the Stokes drift velocity is the average velocity when following a specific fluid parcel as it travels with the fluid flow. For instance, a particle floating at the free surface of water waves, experiences a net Stokes drift velocity in the direction of wave propagation.

<span class="mw-page-title-main">Stokes wave</span> Nonlinear and periodic surface wave on an inviscid fluid layer of constant mean depth

In fluid dynamics, a Stokes wave is a nonlinear and periodic surface wave on an inviscid fluid layer of constant mean depth. This type of modelling has its origins in the mid 19th century when Sir George Stokes – using a perturbation series approach, now known as the Stokes expansion – obtained approximate solutions for nonlinear wave motion.

In fluid dynamics, Luke's variational principle is a Lagrangian variational description of the motion of surface waves on a fluid with a free surface, under the action of gravity. This principle is named after J.C. Luke, who published it in 1967. This variational principle is for incompressible and inviscid potential flows, and is used to derive approximate wave models like the mild-slope equation, or using the averaged Lagrangian approach for wave propagation in inhomogeneous media.

In fluid dynamics, Airy wave theory gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.

<span class="mw-page-title-main">Mild-slope equation</span> Physics phenomenon and formula

In fluid dynamics, the mild-slope equation describes the combined effects of diffraction and refraction for water waves propagating over bathymetry and due to lateral boundaries—like breakwaters and coastlines. It is an approximate model, deriving its name from being originally developed for wave propagation over mild slopes of the sea floor. The mild-slope equation is often used in coastal engineering to compute the wave-field changes near harbours and coasts.

<span class="mw-page-title-main">Radiation stress</span> Term in physical oceanography

In fluid dynamics, the radiation stress is the depth-integrated – and thereafter phase-averaged – excess momentum flux caused by the presence of the surface gravity waves, which is exerted on the mean flow. The radiation stresses behave as a second-order tensor.

In mathematics, the Bretherton equation is a nonlinear partial differential equation introduced by Francis Bretherton in 1964:

<span class="mw-page-title-main">Trochoidal wave</span> Exact solution of the Euler equations for periodic surface gravity waves

In fluid dynamics, a trochoidal wave or Gerstner wave is an exact solution of the Euler equations for periodic surface gravity waves. It describes a progressive wave of permanent form on the surface of an incompressible fluid of infinite depth. The free surface of this wave solution is an inverted (upside-down) trochoid – with sharper crests and flat troughs. This wave solution was discovered by Gerstner in 1802, and rediscovered independently by Rankine in 1863.

<span class="mw-page-title-main">Averaged Lagrangian</span>

In continuum mechanics, Whitham's averaged Lagrangian method – or in short Whitham's method – is used to study the Lagrangian dynamics of slowly-varying wave trains in an inhomogeneous (moving) medium. The method is applicable to both linear and non-linear systems. As a direct consequence of the averaging used in the method, wave action is a conserved property of the wave motion. In contrast, the wave energy is not necessarily conserved, due to the exchange of energy with the mean motion. However the total energy, the sum of the energies in the wave motion and the mean motion, will be conserved for a time-invariant Lagrangian. Further, the averaged Lagrangian has a strong relation to the dispersion relation of the system.

In fluid dynamics, the Craik–Leibovich (CL) vortex force describes a forcing of the mean flow through wave–current interaction, specifically between the Stokes drift velocity and the mean-flow vorticity. The CL vortex force is used to explain the generation of Langmuir circulations by an instability mechanism. The CL vortex-force mechanism was derived and studied by Sidney Leibovich and Alex D. D. Craik in the 1970s and 80s, in their studies of Langmuir circulations.

In physics and mathematics, the Clebsch representation of an arbitrary three-dimensional vector field is:

The variational multiscale method (VMS) is a technique used for deriving models and numerical methods for multiscale phenomena. The VMS framework has been mainly applied to design stabilized finite element methods in which stability of the standard Galerkin method is not ensured both in terms of singular perturbation and of compatibility conditions with the finite element spaces.

The streamline upwind Petrov–Galerkin pressure-stabilizing Petrov–Galerkin formulation for incompressible Navier–Stokes equations can be used for finite element computations of high Reynolds number incompressible flow using equal order of finite element space by introducing additional stabilization terms in the Navier–Stokes Galerkin formulation.

References