Wave

Last updated
Surface waves in water showing water ripples 2006-01-14 Surface waves.jpg
Surface waves in water showing water ripples
Different types of wave with varying rectifications Rectified waves.png
Different types of wave with varying rectifications
Example of biological waves expanding over the brain cortex. Spreading Depolarizations. Santos E et al Neuroimage 2014 .gif
Example of biological waves expanding over the brain cortex. Spreading Depolarizations.

In physics, mathematics, and related fields, a wave is a disturbance (change from equilibrium) of one or more fields such that the field values oscillate repeatedly about a stable equilibrium (resting) value. If the relative amplitude of oscillation at different points in the field remains constant, the wave is said to be a standing wave. If the relative amplitude at different points in the field changes, the wave is said to be a traveling wave. Waves can only exist in fields when there is a force that tends to restore the field to equilibrium.

Contents

The types of waves most commonly studied in physics are mechanical and electromagnetic. In a mechanical wave, stress and strain fields oscillate about a mechanical equilibrium. A traveling mechanical wave is a local deformation (strain) in some physical medium that propagates from particle to particle by creating local stresses that cause strain in neighboring particles too. For example, sound waves in air are variations of the local pressure that propagate by collisions between gas molecules. Other examples of mechanical waves are seismic waves, gravity waves, vortices, and shock waves. In an electromagnetic wave the electric and magnetic fields oscillate. A traveling electromagnetic wave (light) consists of a combination of variable electric and magnetic fields, that propagates through space according to Maxwell's equations. Electromagnetic waves can travel through transparent dielectric media or through a vacuum; examples include radio waves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays.

Other types of waves include gravitational waves, which are disturbances in a gravitational field that propagate according to general relativity; heat diffusion waves; plasma waves, that combine mechanical deformations and electromagnetic fields; reaction-diffusion waves, such as in the Belousov–Zhabotinsky reaction; and many more.

Mechanical and electromagnetic waves transfer energy, [2] , momentum, and information, but they do not transfer particles in the medium. In mathematics and electronics waves are studied as signals. [3] On the other hand, some waves do not appear to move at all, like standing waves (which are fundamental to music) and hydraulic jumps. Some, like the probability waves of quantum mechanics, may be completely static.

A physical wave is almost always confined to some finite region of space, called its domain. For example, the seismic waves generated by earthquakes are significant only in the interior and surface of the planet, so they can be ignored outside it. However, waves with infinite domain, that extend over the whole space, are commonly studied in mathematics, and are very valuable tools for understanding physical waves in finite domains.

A plane wave seems to travel in a definite direction, and has constant value over any plane perpendicular to that direction. Mathematically, the simplest waves are the sinusoidal ones in which each point in the field experiences simple harmonic motion. Complicated waves can often be described as the sum of many sinusoidal plane waves. A plane wave can be a transverse, if its effect at each point is described by a vector that is perpendicular to the direction of propagation or energy transfer; or longitudinal, if the describing vectors are parallel to the direction of energy propagation. While mechanical waves can be both transverse and longitudinal, electromagnetic waves are transverse in free space.

Mathematical description

Single waves

A wave can be described just like a field, namely as a function where is a position and is a time.

The value of is a point of space, specifically in the region where the wave is defined. In mathematical terms, it is usually a vector in the Cartesian three-dimensional space . However, in many cases one can ignore one dimension, and let be a point of the Cartesian plane . This is the case, for example, when studying vibrations of a drum skin. One may even restrict to a point of the Cartesian line — that is, the set of real numbers. This is the case, for example, when studying vibrations in a violin string or recorder. The time , on the other hand, is always assumed to be a scalar; that is, a real number.

The value of can be any physical quantity of interest assigned to the point that may vary with time. For example, if represents the vibrations inside an elastic solid, the value of is usually a vector that gives the current displacement from of the material particles that would be at the point in the absence of vibration. For an electromagnetic wave, the value of can be the electric field vector , or the magnetic field vector , or any related quantity, such as the Poynting vector . In fluid dynamics, the value of could be the velocity vector of the fluid at the point , or any scalar property like pressure, temperature, or density. In a chemical reaction, could be the concentration of some substance in the neighborhood of point of the reaction medium.

For any dimension (1, 2, or 3), the wave's domain is then a subset of , such that the function value is defined for any point in . For example, when describing the motion of a drum skin, one can consider to be a disk (circle) on the plane with center at the origin , and let be the vertical displacement of the skin at the point of and at time .

Wave families

Sometimes one is interested in a single specific wave. More often, however, one needs to understand large set of possible waves; like all the ways that a drum skin can vibrate after being struck once with a drum stick, or all the possible radar echos one could get from an airplane that may be approaching an airport.

In some of those situations, one may describe such a family of waves by a function that depends on certain parameters , besides and . Then one can obtain different waves — that is, different functions of and — by choosing different values for those parameters.

Sound pressure wave in a half-open pipe playing the 7th harmonic of the fundamental (n = 4). Half-open pipe wave.gif
Sound pressure wave in a half-open pipe playing the 7th harmonic of the fundamental (n = 4).

For example, the sound pressure inside a recorder that is playing a "pure" note is typically a standing wave, that can be written as

The parameter defines the amplitude of the wave (that is, the maximum sound pressure in the bore, which is related to the loudness of the note); is the speed of sound; is the length of the bore; and is a positive integer (1,2,3,...) that specifies the number of nodes in the standing wave. (The position should be measured from the mouthpiece, and the time from any moment at which the pressure at the mouthpiece is maximum. The quantity is the wavelength of the emitted note, and is its frequency.) Many general properties of these waves can be inferred from this general equation, without choosing specific values for the parameters.

As another example, it may be that the vibrations of a drum skin after a single strike depend only on the distance from the center of the skin to the strike point, and on the strength of the strike. Then the vibration for all possible strikes can be described by a function .

Sometimes the family of waves of interest has infinitely many parameters. For example, one may want to describe what happens to the temperature in a metal bar when it is initially heated at various temperatures at different points along its length, and then allowed to cool by itself in vacuum. In that case, instead of a scalar or vector, the parameter would have to be a function such that is the initial temperature at each point of the bar. Then the temperatures at later times can be expressed by a function that depends on the function (that is, a functional operator), so that the temperature at a later time is

Differential wave equations

Another way to describe and study a family of waves is to give a mathematical equation that, instead of explicitly giving the value of , only constrains how those values can change with time. Then the family of waves in question consists of all functions that satisfy those constraints — that is, all solutions of the equation.

This approach is extremely important in physics, because the constraints usually are a consequence of the physical processes that cause the wave to evolve. For example, if is the temperature inside a block of some homogeneous and isotropic solid material, its evolution is constrained by the partial differential equation

where is the heat that is being generated per unit of volume and time in the neighborhood of at time (for example, by chemical reactions happening there); are the Cartesian coordinates of the point ; is the (first) derivative of with respect to ; and is the second derivative of relative to . (The symbol "" is meant to signify that, in the derivative with respect to some variable, all other variables must be considered fixed.)

This equation can be derived from the laws of physics that govern the diffusion of heat in solid media. For that reason, it is called the heat equation in mathematics, even though it applies to many other physical quantities besides temperatures.

For another example, we can describe all possible sounds echoing within a container of gas by a function that gives the pressure at a point and time within that container. If the gas was initially at uniform temperature and composition, the evolution of is constrained by the formula

Here is some extra compression force that is being applied to the gas near by some external process, such as a loudspeaker or piston right next to .

This same differential equation describes the behavior of mechanical vibrations and electromagnetic fields in a homogeneous isotropic non-conducting solid. Note that this equation differs from that of heat flow only in that the left-hand side is , the second derivative of with respect to time, rather than the first derivative . Yet this small change makes a huge difference on the set of solutions . This differential equation is called "the" wave equation in mathematics, even though it describes only one very special kind of waves.

Wave in elastic medium

Consider a traveling transverse wave (which may be a pulse) on a string (the medium). Consider the string to have a single spatial dimension. Consider this wave as traveling

Wavelength l, can be measured between any two corresponding points on a waveform Nonsinusoidal wavelength.svg
Wavelength λ, can be measured between any two corresponding points on a waveform
Animation of two waves, the green wave moves to the right while blue wave moves to the left, the net red wave amplitude at each point is the sum of the amplitudes of the individual waves. Note that f(x,t) + g(x,t) = u(x,t) Superpositionprinciple.gif
Animation of two waves, the green wave moves to the right while blue wave moves to the left, the net red wave amplitude at each point is the sum of the amplitudes of the individual waves. Note that f(x,t) + g(x,t) = u(x,t)

This wave can then be described by the two-dimensional functions

(waveform traveling to the right)
(waveform traveling to the left)

or, more generally, by d'Alembert's formula: [6]

representing two component waveforms and traveling through the medium in opposite directions. A generalized representation of this wave can be obtained [7] as the partial differential equation

General solutions are based upon Duhamel's principle. [8]

Wave forms

Sine, square, triangle and sawtooth waveforms. Waveforms.svg
Sine, square, triangle and sawtooth waveforms.

The form or shape of F in d'Alembert's formula involves the argument x − vt. Constant values of this argument correspond to constant values of F, and these constant values occur if x increases at the same rate that vt increases. That is, the wave shaped like the function F will move in the positive x-direction at velocity v (and G will propagate at the same speed in the negative x-direction). [9]

In the case of a periodic function F with period λ, that is, F(x + λvt) = F(x vt), the periodicity of F in space means that a snapshot of the wave at a given time t finds the wave varying periodically in space with period λ (the wavelength of the wave). In a similar fashion, this periodicity of F implies a periodicity in time as well: F(xv(t + T)) = F(x vt) provided vT = λ, so an observation of the wave at a fixed location x finds the wave undulating periodically in time with period T = λ/v. [10]

Amplitude and modulation

Amplitude modulation can be achieved through f(x,t) = 1.00*sin(2*pi/0.10*(x-1.00*t)) and g(x,t) = 1.00*sin(2*pi/0.11*(x-1.00*t))only the resultant is visible to improve clarity of waveform. Amplitudemodulation.gif
Amplitude modulation can be achieved through f(x,t) = 1.00*sin(2*pi/0.10*(x-1.00*t)) and g(x,t) = 1.00*sin(2*pi/0.11*(x-1.00*t))only the resultant is visible to improve clarity of waveform.
Illustration of the envelope (the slowly varying red curve) of an amplitude-modulated wave. The fast varying blue curve is the carrier wave, which is being modulated. Wave packet.svg
Illustration of the envelope (the slowly varying red curve) of an amplitude-modulated wave. The fast varying blue curve is the carrier wave, which is being modulated.

The amplitude of a wave may be constant (in which case the wave is a c.w. or continuous wave ), or may be modulated so as to vary with time and/or position. The outline of the variation in amplitude is called the envelope of the wave. Mathematically, the modulated wave can be written in the form: [11] [12] [13]

where is the amplitude envelope of the wave, is the wavenumber and is the phase . If the group velocity (see below) is wavelength-independent, this equation can be simplified as: [14]

showing that the envelope moves with the group velocity and retains its shape. Otherwise, in cases where the group velocity varies with wavelength, the pulse shape changes in a manner often described using an envelope equation. [14] [15]

Phase velocity and group velocity

The red square moves with the phase velocity, while the green circles propagate with the group velocity Wave group.gif
The red square moves with the phase velocity, while the green circles propagate with the group velocity

There are two velocities that are associated with waves, the phase velocity and the group velocity.

Phase velocity is the rate at which the phase of the wave propagates in space: any given phase of the wave (for example, the crest) will appear to travel at the phase velocity. The phase velocity is given in terms of the wavelength λ (lambda) and period T as

A wave with the group and phase velocities going in different directions Wave opposite-group-phase-velocity.gif
A wave with the group and phase velocities going in different directions

Group velocity is a property of waves that have a defined envelope, measuring propagation through space (that is, phase velocity) of the overall shape of the waves' amplitudes – modulation or envelope of the wave.

Sine waves

Sinusoidal waves correspond to simple harmonic motion. Simple harmonic motion animation.gif
Sinusoidal waves correspond to simple harmonic motion.

Mathematically, the most basic wave is the (spatially) one-dimensional sine wave (also called harmonic wave or sinusoid) with an amplitude described by the equation:

where

The units of the amplitude depend on the type of wave. Transverse mechanical waves (for example, a wave on a string) have an amplitude expressed as a distance (for example, meters), longitudinal mechanical waves (for example, sound waves) use units of pressure (for example, pascals), and electromagnetic waves (a form of transverse vacuum wave) express the amplitude in terms of its electric field (for example, volts/meter).

The wavelength is the distance between two sequential crests or troughs (or other equivalent points), generally is measured in meters. A wavenumber , the spatial frequency of the wave in radians per unit distance (typically per meter), can be associated with the wavelength by the relation

The period is the time for one complete cycle of an oscillation of a wave. The frequency is the number of periods per unit time (per second) and is typically measured in hertz denoted as Hz. These are related by:

In other words, the frequency and period of a wave are reciprocals.

The angular frequency represents the frequency in radians per second. It is related to the frequency or period by

The wavelength of a sinusoidal waveform traveling at constant speed is given by: [16]

where is called the phase speed (magnitude of the phase velocity) of the wave and is the wave's frequency.

Wavelength can be a useful concept even if the wave is not periodic in space. For example, in an ocean wave approaching shore, the incoming wave undulates with a varying local wavelength that depends in part on the depth of the sea floor compared to the wave height. The analysis of the wave can be based upon comparison of the local wavelength with the local water depth. [17]

Although arbitrary wave shapes will propagate unchanged in lossless linear time-invariant systems, in the presence of dispersion the sine wave is the unique shape that will propagate unchanged but for phase and amplitude, making it easy to analyze. [18] Due to the Kramers–Kronig relations, a linear medium with dispersion also exhibits loss, so the sine wave propagating in a dispersive medium is attenuated in certain frequency ranges that depend upon the medium. [19] The sine function is periodic, so the sine wave or sinusoid has a wavelength in space and a period in time. [20] [21]

The sinusoid is defined for all times and distances, whereas in physical situations we usually deal with waves that exist for a limited span in space and duration in time. An arbitrary wave shape can be decomposed into an infinite set of sinusoidal waves by the use of Fourier analysis. As a result, the simple case of a single sinusoidal wave can be applied to more general cases. [22] [23] In particular, many media are linear, or nearly so, so the calculation of arbitrary wave behavior can be found by adding up responses to individual sinusoidal waves using the superposition principle to find the solution for a general waveform. [24] When a medium is nonlinear, then the response to complex waves cannot be determined from a sine-wave decomposition.

Plane waves

A plane wave is a kind of wave whose value varies only in one spatial direction. That is, its value is constant on a plane that is perpendicular to that direction. Plane waves can be specified by a vector of unit length indicating the direction that the wave varies in, and a wave profile describing how the wave varies as a function of the displacement along that direction () and time (). Since the wave profile only depends on the position in the combination , any displacement in directions perpendicular to cannot affect the value of the field.

Plane waves are often used to model electromagnetic waves far from a source. For electromagnetic plane waves, the electric and magnetic fields themselves are transverse to the direction of propagation, and also perpendicular to each other.

Standing waves

Standing wave in stationary medium. The red dots represent the wave nodes Standing wave.gif
Standing wave in stationary medium. The red dots represent the wave nodes

A standing wave, also known as a stationary wave, is a wave that remains in a constant position. This phenomenon can occur because the medium is moving in the opposite direction to the wave, or it can arise in a stationary medium as a result of interference between two waves traveling in opposite directions.

The sum of two counter-propagating waves (of equal amplitude and frequency) creates a standing wave. Standing waves commonly arise when a boundary blocks further propagation of the wave, thus causing wave reflection, and therefore introducing a counter-propagating wave. For example, when a violin string is displaced, transverse waves propagate out to where the string is held in place at the bridge and the nut, where the waves are reflected back. At the bridge and nut, the two opposed waves are in antiphase and cancel each other, producing a node. Halfway between two nodes there is an antinode, where the two counter-propagating waves enhance each other maximally. There is no net propagation of energy over time.

Physical properties

Light beam exhibiting reflection, refraction, transmission and dispersion when encountering a prism Light dispersion of a mercury-vapor lamp with a flint glass prism IPNrdeg0125.jpg
Light beam exhibiting reflection, refraction, transmission and dispersion when encountering a prism

Waves exhibit common behaviors under a number of standard situations, for example:

Transmission and media

Waves normally move in a straight line (that is, rectilinearly) through a transmission medium . Such media can be classified into one or more of the following categories:

Absorption

Absorption of waves means, if a kind of wave strikes a matter, it will be absorbed by the matter. When a wave with that same natural frequency impinges upon an atom, then the electrons of that atom will be set into vibrational motion. If a wave of a given frequency strikes a material with electrons having the same vibrational frequencies, then those electrons will absorb the energy of the wave and transform it into vibrational motion.

Reflection

When a wave strikes a reflective surface, it changes direction, such that the angle made by the incident wave and line normal to the surface equals the angle made by the reflected wave and the same normal line.

Refraction

Sinusoidal traveling plane wave entering a region of lower wave velocity at an angle, illustrating the decrease in wavelength and change of direction (refraction) that results. Wave refraction.gif
Sinusoidal traveling plane wave entering a region of lower wave velocity at an angle, illustrating the decrease in wavelength and change of direction (refraction) that results.

Refraction is the phenomenon of a wave changing its speed. Mathematically, this means that the size of the phase velocity changes. Typically, refraction occurs when a wave passes from one medium into another. The amount by which a wave is refracted by a material is given by the refractive index of the material. The directions of incidence and refraction are related to the refractive indices of the two materials by Snell's law.

Diffraction

A wave exhibits diffraction when it encounters an obstacle that bends the wave or when it spreads after emerging from an opening. Diffraction effects are more pronounced when the size of the obstacle or opening is comparable to the wavelength of the wave.

Interference

Waves that encounter each other combine through superposition to create a new wave called an interference pattern. Important interference patterns occur for waves that are in phase.

Polarization

Circular.Polarization.Circularly.Polarized.Light Circular.Polarizer Creating.Left.Handed.Helix.View.svg

The phenomenon of polarization arises when wave motion can occur simultaneously in two orthogonal directions. Transverse waves can be polarized, for instance. When polarization is used as a descriptor without qualification, it usually refers to the special, simple case of linear polarization. A transverse wave is linearly polarized if it oscillates in only one direction or plane. In the case of linear polarization, it is often useful to add the relative orientation of that plane, perpendicular to the direction of travel, in which the oscillation occurs, such as "horizontal" for instance, if the plane of polarization is parallel to the ground. Electromagnetic waves propagating in free space, for instance, are transverse; they can be polarized by the use of a polarizing filter.

Longitudinal waves, such as sound waves, do not exhibit polarization. For these waves there is only one direction of oscillation, that is, along the direction of travel.

Dispersion

Schematic of light being dispersed by a prism. Click to see animation. Light dispersion conceptual waves.gif
Schematic of light being dispersed by a prism. Click to see animation.

A wave undergoes dispersion when either the phase velocity or the group velocity depends on the wave frequency. Dispersion is most easily seen by letting white light pass through a prism, the result of which is to produce the spectrum of colours of the rainbow. Isaac Newton performed experiments with light and prisms, presenting his findings in the Opticks (1704) that white light consists of several colours and that these colours cannot be decomposed any further. [25]

Mechanical waves

Waves on strings

The speed of a transverse wave traveling along a vibrating string ( v ) is directly proportional to the square root of the tension of the string ( T ) over the linear mass density ( μ ):

where the linear density μ is the mass per unit length of the string.

Acoustic waves

Acoustic or sound waves travel at speed given by

or the square root of the adiabatic bulk modulus divided by the ambient fluid density (see speed of sound).

Water waves

Shallow water wave.gif

Seismic waves

Seismic waves are waves of energy that travel through the Earth's layers, and are a result of earthquakes, volcanic eruptions, magma movement, large landslides and large man-made explosions that give out low-frequency acoustic energy.

Doppler effect

The Doppler effect (or the Doppler shift) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. [26] It is named after the Austrian physicist Christian Doppler, who described the phenomenon in 1842.

Shock waves

Formation of a shock wave by a plane. Transonico-en.svg
Formation of a shock wave by a plane.

A shock wave is a type of propagating disturbance. When a wave moves faster than the local speed of sound in a fluid, it is a shock wave. Like an ordinary wave, a shock wave carries energy and can propagate through a medium; however, it is characterized by an abrupt, nearly discontinuous change in pressure, temperature and density of the medium. [27]

Other

Electromagnetic waves

Onde electromagnetique.png

An electromagnetic wave consists of two waves that are oscillations of the electric and magnetic fields. An electromagnetic wave travels in a direction that is at right angles to the oscillation direction of both fields. In the 19th century, James Clerk Maxwell showed that, in vacuum, the electric and magnetic fields satisfy the wave equation both with speed equal to that of the speed of light. From this emerged the idea that light is an electromagnetic wave. Electromagnetic waves can have different frequencies (and thus wavelengths), giving rise to various types of radiation such as radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and Gamma rays.

Quantum mechanical waves

Schrödinger equation

The Schrödinger equation describes the wave-like behavior of particles in quantum mechanics. Solutions of this equation are wave functions which can be used to describe the probability density of a particle.

Dirac equation

The Dirac equation is a relativistic wave equation detailing electromagnetic interactions. Dirac waves accounted for the fine details of the hydrogen spectrum in a completely rigorous way. The wave equation also implied the existence of a new form of matter, antimatter, previously unsuspected and unobserved and which was experimentally confirmed. In the context of quantum field theory, the Dirac equation is reinterpreted to describe quantum fields corresponding to spin-½ particles.

A propagating wave packet; in general, the envelope of the wave packet moves at a different speed than the constituent waves. Wave packet (dispersion).gif
A propagating wave packet; in general, the envelope of the wave packet moves at a different speed than the constituent waves.

de Broglie waves

Louis de Broglie postulated that all particles with momentum have a wavelength

where h is Planck's constant, and p is the magnitude of the momentum of the particle. This hypothesis was at the basis of quantum mechanics. Nowadays, this wavelength is called the de Broglie wavelength. For example, the electrons in a CRT display have a de Broglie wavelength of about 10−13 m.

A wave representing such a particle traveling in the k-direction is expressed by the wave function as follows:

where the wavelength is determined by the wave vector k as:

and the momentum by:

However, a wave like this with definite wavelength is not localized in space, and so cannot represent a particle localized in space. To localize a particle, de Broglie proposed a superposition of different wavelengths ranging around a central value in a wave packet, [30] a waveform often used in quantum mechanics to describe the wave function of a particle. In a wave packet, the wavelength of the particle is not precise, and the local wavelength deviates on either side of the main wavelength value.

In representing the wave function of a localized particle, the wave packet is often taken to have a Gaussian shape and is called a Gaussian wave packet. [31] Gaussian wave packets also are used to analyze water waves. [32]

For example, a Gaussian wavefunction ψ might take the form: [33]

at some initial time t = 0, where the central wavelength is related to the central wave vector k0 as λ0 = 2π / k0. It is well known from the theory of Fourier analysis, [34] or from the Heisenberg uncertainty principle (in the case of quantum mechanics) that a narrow range of wavelengths is necessary to produce a localized wave packet, and the more localized the envelope, the larger the spread in required wavelengths. The Fourier transform of a Gaussian is itself a Gaussian. [35] Given the Gaussian:

the Fourier transform is:

The Gaussian in space therefore is made up of waves:

that is, a number of waves of wavelengths λ such that kλ = 2 π.

The parameter σ decides the spatial spread of the Gaussian along the x-axis, while the Fourier transform shows a spread in wave vector k determined by 1/σ. That is, the smaller the extent in space, the larger the extent in k, and hence in λ = 2π/k.

Animation showing the effect of a cross-polarized gravitational wave on a ring of test particles GravitationalWave CrossPolarization.gif
Animation showing the effect of a cross-polarized gravitational wave on a ring of test particles

Gravity waves

Gravity waves are waves generated in a fluid medium or at the interface between two media when the force of gravity or buoyancy tries to restore equilibrium. A ripple on a pond is one example.

Gravitational waves

Gravitational waves also travel through space. The first observation of gravitational waves was announced on 11 February 2016. [36] Gravitational waves are disturbances in the curvature of spacetime, predicted by Einstein's theory of general relativity.

See also

Waves in general

Parameters

Waveforms

Electromagnetic waves

In fluids

In quantum mechanics

In relativity

Other specific types of waves

Related Research Articles

Diffraction Phenomena

Diffraction refers to various phenomena that occur when a wave encounters an obstacle or a slit. It is defined as the bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a secondary source of the propagating wave. Italian scientist Francesco Maria Grimaldi coined the word "diffraction" and was the first to record accurate observations of the phenomenon in 1660.

Electromagnetic radiation Form of energy emitted and absorbed by particles which are charged which shows wave-like behavior as it travels through space

In physics, electromagnetic radiation refers to the waves of the electromagnetic field, propagating (radiating) through space, carrying electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays.

Group velocity Physical quantity

The group velocity of a wave is the velocity with which the overall envelope shape of the wave's amplitudes—known as the modulation or envelope of the wave—propagates through space.

Phase velocity rate at which the phase of the wave propagates in space

The phase velocity of a wave is the rate at which the wave propagates in some medium. This is the velocity at which the phase of any one frequency component of the wave travels. For such a component, any given phase of the wave will appear to travel at the phase velocity. The phase velocity is given in terms of the wavelength λ (lambda) and time period T as

Refractive index Ratio of the speed of light in vacuum to that in the medium

In optics, the refractive index of a material is a dimensionless number that describes how fast light travels through the material. It is defined as

Wavelength Spatial period of the wave—the distance over which the waves shape repeats, and thus the inverse of the spatial frequency

In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, troughs, or zero crossings, and is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. The inverse of the wavelength is called the spatial frequency. Wavelength is commonly designated by the Greek letter lambda (λ). The term wavelength is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids.

Transverse wave Moving wave whose oscillations are perpendicular to the direction of the wave

In physics, a transverse wave is a moving wave whose oscillations are perpendicular to the direction of the wave or path of propagation.

Longitudinal wave waves in which the displacement of the medium is in the same direction as, or the opposite direction to, the direction of propagation of the wave

Longitudinal waves are waves in which the displacement of the medium is in the same direction as, or the opposite direction to, the direction of propagation of the wave. Mechanical longitudinal waves are also called compressional or compression waves, because they produce compression and rarefaction when traveling through a medium, and pressure waves, because they produce increases and decreases in pressure.

Dispersion (optics) Dependence of phase velocity on frequency

In optics, dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. Media having this common property may be termed dispersive media. Sometimes the term chromatic dispersion is used for specificity. Although the term is used in the field of optics to describe light and other electromagnetic waves, dispersion in the same sense can apply to any sort of wave motion such as acoustic dispersion in the case of sound and seismic waves, in gravity waves, and for telecommunication signals along transmission lines or optical fiber.

Matter waves are a central part of the theory of quantum mechanics, being an example of wave–particle duality. All matter exhibits wave-like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wave. In most cases, however, the wavelength is too small to have a practical impact on day-to-day activities. Hence in our day-to-day lives with objects the size of tennis balls and people, matter waves are not relevant.

In physics, a wave vector is a vector which helps describe a wave. Like any vector, it has a magnitude and direction, both of which are important. Its magnitude is either the wavenumber or angular wavenumber of the wave, and its direction is ordinarily the direction of wave propagation.

Geometrical optics, or ray optics, is a model of optics that describes light propagation in terms of rays. The ray in geometric optics is an abstraction useful for approximating the paths along which light propagates under certain circumstances.

Dispersion relation Relation of wavelength/wavenumber as a function of a waves frequency

In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the phase velocity and group velocity of waves in the medium, as a function of frequency. In addition to the geometry-dependent and material-dependent dispersion relations, the overarching Kramers–Kronig relations describe the frequency dependence of wave propagation and attenuation.

In fluid dynamics, dispersion of water waves generally refers to frequency dispersion, which means that waves of different wavelengths travel at different phase speeds. Water waves, in this context, are waves propagating on the water surface, with gravity and surface tension as the restoring forces. As a result, water with a free surface is generally considered to be a dispersive medium.

The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:

The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.

Lamb waves

Lamb waves propagate in solid plates or spheres. They are elastic waves whose particle motion lies in the plane that contains the direction of wave propagation and the plane normal. In 1917, the English mathematician Horace Lamb published his classic analysis and description of acoustic waves of this type. Their properties turned out to be quite complex. An infinite medium supports just two wave modes traveling at unique velocities; but plates support two infinite sets of Lamb wave modes, whose velocities depend on the relationship between wavelength and plate thickness.

Stokes wave A non-linear and periodic surface wave on an inviscid fluid layer of constant mean depth

In fluid dynamics, a Stokes wave is a non-linear and periodic surface wave on an inviscid fluid layer of constant mean depth. This type of modelling has its origins in the mid 19th century when Sir George Stokes – using a perturbation series approach, now known as the Stokes expansion – obtained approximate solutions for non-linear wave motion.

In fluid dynamics, Airy wave theory gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.

Envelope (waves) function describing the extremes of an oscillating signal

In physics and engineering, the envelope of an oscillating signal is a smooth curve outlining its extremes. The envelope thus generalizes the concept of a constant amplitude into an instantaneous amplitude. The figure illustrates a modulated sine wave varying between an upper and a lower envelope. The envelope function may be a function of time, space, angle, or indeed of any variable.

References

  1. Santos, Edgar; Schöll, Michael; Sánchez-Porras, Renán; Dahlem, Markus A.; Silos, Humberto; Unterberg, Andreas; Dickhaus, Hartmut; Sakowitz, Oliver W. (2014-10-01). "Radial, spiral and reverberating waves of spreading depolarization occur in the gyrencephalic brain". NeuroImage. 99: 244–255. doi:10.1016/j.neuroimage.2014.05.021. ISSN   1095-9572. PMID   24852458.
  2. ( Hall 1982 , p. 8)
  3. Pragnan Chakravorty, "What Is a Signal? [Lecture Notes]," IEEE Signal Processing Magazine, vol. 35, no. 5, pp. 175-177, Sept. 2018. doi : 10.1109/MSP.2018.2832195
  4. Michael A. Slawinski (2003). "Wave equations". Seismic waves and rays in elastic media. Elsevier. pp. 131 ff. ISBN   978-0-08-043930-3.
  5. Lev A. Ostrovsky & Alexander I. Potapov (2001). Modulated waves: theory and application. Johns Hopkins University Press. ISBN   978-0-8018-7325-6.
  6. Karl F Graaf (1991). Wave motion in elastic solids (Reprint of Oxford 1975 ed.). Dover. pp. 13–14. ISBN   978-0-486-66745-4.
  7. For an example derivation, see the steps leading up to eq. (17) in Francis Redfern. "Kinematic Derivation of the Wave Equation". Physics Journal.
  8. Jalal M. Ihsan Shatah; Michael Struwe (2000). "The linear wave equation". Geometric wave equations. American Mathematical Society Bookstore. pp. 37ff. ISBN   978-0-8218-2749-9.
  9. Louis Lyons (1998). All you wanted to know about mathematics but were afraid to ask. Cambridge University Press. pp. 128 ff. ISBN   978-0-521-43601-4.
  10. Alexander McPherson (2009). "Waves and their properties". Introduction to Macromolecular Crystallography (2 ed.). Wiley. p. 77. ISBN   978-0-470-18590-2.
  11. Christian Jirauschek (2005). FEW-cycle Laser Dynamics and Carrier-envelope Phase Detection. Cuvillier Verlag. p. 9. ISBN   978-3-86537-419-6.
  12. Fritz Kurt Kneubühl (1997). Oscillations and waves. Springer. p. 365. ISBN   978-3-540-62001-3.
  13. Mark Lundstrom (2000). Fundamentals of carrier transport. Cambridge University Press. p. 33. ISBN   978-0-521-63134-1.
  14. 1 2 Chin-Lin Chen (2006). "§13.7.3 Pulse envelope in nondispersive media". Foundations for guided-wave optics. Wiley. p. 363. ISBN   978-0-471-75687-3.
  15. Stefano Longhi; Davide Janner (2008). "Localization and Wannier wave packets in photonic crystals". In Hugo E. Hernández-Figueroa; Michel Zamboni-Rached; Erasmo Recami (eds.). Localized Waves. Wiley-Interscience. p. 329. ISBN   978-0-470-10885-7.
  16. David C. Cassidy; Gerald James Holton; Floyd James Rutherford (2002). Understanding physics. Birkhäuser. pp. 339ff. ISBN   978-0-387-98756-9.
  17. Paul R Pinet (2009). op. cit. p. 242. ISBN   978-0-7637-5993-3.
  18. Mischa Schwartz; William R. Bennett & Seymour Stein (1995). Communication Systems and Techniques. John Wiley and Sons. p. 208. ISBN   978-0-7803-4715-1.
  19. See Eq. 5.10 and discussion in A.G.G.M. Tielens (2005). The physics and chemistry of the interstellar medium. Cambridge University Press. pp. 119 ff. ISBN   978-0-521-82634-1.; Eq. 6.36 and associated discussion in Otfried Madelung (1996). Introduction to solid-state theory (3rd ed.). Springer. pp. 261 ff. ISBN   978-3-540-60443-3.; and Eq. 3.5 in F Mainardi (1996). "Transient waves in linear viscoelastic media". In Ardéshir Guran; A. Bostrom; Herbert Überall; O. Leroy (eds.). Acoustic Interactions with Submerged Elastic Structures: Nondestructive testing, acoustic wave propagation and scattering. World Scientific. p. 134. ISBN   978-981-02-4271-8.
  20. Aleksandr Tikhonovich Filippov (2000). The versatile soliton. Springer. p. 106. ISBN   978-0-8176-3635-7.
  21. Seth Stein, Michael E. Wysession (2003). An introduction to seismology, earthquakes, and earth structure. Wiley-Blackwell. p. 31. ISBN   978-0-86542-078-6.
  22. Seth Stein, Michael E. Wysession (2003). op. cit.. p. 32. ISBN   978-0-86542-078-6.
  23. Kimball A. Milton; Julian Seymour Schwinger (2006). Electromagnetic Radiation: Variational Methods, Waveguides and Accelerators. Springer. p. 16. ISBN   978-3-540-29304-0. Thus, an arbitrary function f(r, t) can be synthesized by a proper superposition of the functions exp[i (k·r−ωt)]...
  24. Raymond A. Serway & John W. Jewett (2005). "§14.1 The Principle of Superposition". Principles of physics (4th ed.). Cengage Learning. p. 433. ISBN   978-0-534-49143-7.
  25. Newton, Isaac (1704). "Prop VII Theor V". Opticks: Or, A treatise of the Reflections, Refractions, Inflexions and Colours of Light. Also Two treatises of the Species and Magnitude of Curvilinear Figures. 1. London. p. 118. All the Colours in the Universe which are made by Light... are either the Colours of homogeneal Lights, or compounded of these...
  26. Giordano, Nicholas (2009). College Physics: Reasoning and Relationships. Cengage Learning. pp. 421–424. ISBN   978-0534424718.
  27. Anderson, John D. Jr. (January 2001) [1984], Fundamentals of Aerodynamics (3rd ed.), McGraw-Hill Science/Engineering/Math, ISBN   978-0-07-237335-6
  28. M.J. Lighthill; G.B. Whitham (1955). "On kinematic waves. II. A theory of traffic flow on long crowded roads". Proceedings of the Royal Society of London. Series A. 229 (1178): 281–345. Bibcode:1955RSPSA.229..281L. CiteSeerX   10.1.1.205.4573 . doi:10.1098/rspa.1955.0088.CS1 maint: ref=harv (link) And: P.I. Richards (1956). "Shockwaves on the highway". Operations Research. 4 (1): 42–51. doi:10.1287/opre.4.1.42.CS1 maint: ref=harv (link)
  29. A.T. Fromhold (1991). "Wave packet solutions". Quantum Mechanics for Applied Physics and Engineering (Reprint of Academic Press 1981 ed.). Courier Dover Publications. pp. 59 ff. ISBN   978-0-486-66741-6. (p. 61) ...the individual waves move more slowly than the packet and therefore pass back through the packet as it advances
  30. Ming Chiang Li (1980). "Electron Interference". In L. Marton; Claire Marton (eds.). Advances in Electronics and Electron Physics. 53. Academic Press. p. 271. ISBN   978-0-12-014653-6.
  31. See for example Walter Greiner; D. Allan Bromley (2007). Quantum Mechanics (2 ed.). Springer. p. 60. ISBN   978-3-540-67458-0. and John Joseph Gilman (2003). Electronic basis of the strength of materials. Cambridge University Press. p. 57. ISBN   978-0-521-62005-5.,Donald D. Fitts (1999). Principles of quantum mechanics. Cambridge University Press. p. 17. ISBN   978-0-521-65841-6..
  32. Chiang C. Mei (1989). The applied dynamics of ocean surface waves (2nd ed.). World Scientific. p. 47. ISBN   978-9971-5-0789-3.
  33. Walter Greiner; D. Allan Bromley (2007). Quantum Mechanics (2nd ed.). Springer. p. 60. ISBN   978-3-540-67458-0.
  34. Siegmund Brandt; Hans Dieter Dahmen (2001). The picture book of quantum mechanics (3rd ed.). Springer. p. 23. ISBN   978-0-387-95141-6.
  35. Cyrus D. Cantrell (2000). Modern mathematical methods for physicists and engineers . Cambridge University Press. p.  677. ISBN   978-0-521-59827-9.
  36. "Gravitational waves detected for 1st time, 'opens a brand new window on the universe'". CBC. 11 February 2016.

Sources