Waves in plasmas

Last updated

In plasma physics, waves in plasmas are an interconnected set of particles and fields which propagate in a periodically repeating fashion. A plasma is a quasineutral, electrically conductive fluid. In the simplest case, it is composed of electrons and a single species of positive ions, but it may also contain multiple ion species including negative ions as well as neutral particles. Due to its electrical conductivity, a plasma couples to electric and magnetic fields. This complex of particles and fields supports a wide variety of wave phenomena.

The electromagnetic fields in a plasma are assumed to have two parts, one static/equilibrium part and one oscillating/perturbation part. Waves in plasmas can be classified as electromagnetic or electrostatic according to whether or not there is an oscillating magnetic field. Applying Faraday's law of induction to plane waves, we find , implying that an electrostatic wave must be purely longitudinal. An electromagnetic wave, in contrast, must have a transverse component, but may also be partially longitudinal.

Waves can be further classified by the oscillating species. In most plasmas of interest, the electron temperature is comparable to or larger than the ion temperature. This fact, coupled with the much smaller mass of the electron, implies that the electrons move much faster than the ions. An electron mode depends on the mass of the electrons, but the ions may be assumed to be infinitely massive, i.e. stationary. An ion mode depends on the ion mass, but the electrons are assumed to be massless and to redistribute themselves instantaneously according to the Boltzmann relation. Only rarely, e.g. in the lower hybrid oscillation, will a mode depend on both the electron and the ion mass.

The various modes can also be classified according to whether they propagate in an unmagnetized plasma or parallel, perpendicular, or oblique to the stationary magnetic field. Finally, for perpendicular electromagnetic electron waves, the perturbed electric field can be parallel or perpendicular to the stationary magnetic field.

Summary of elementary plasma waves
EM characteroscillating speciesconditions dispersion relation name
electrostaticelectrons or plasma oscillation (or Langmuir wave)
upper hybrid oscillation
ions or ion acoustic wave
(nearly) electrostatic ion cyclotron wave
(exactly) lower hybrid oscillation
electromagneticelectrons light wave
, O wave
, X wave
(right circ. pol.) R wave (whistler mode)
(left circ. pol.) L wave
ionsnone
Alfvén wave
magnetosonic wave

(The subscript 0 denotes the static part of the electric or magnetic field, and the subscript 1 denotes the oscillating part.)

See also

Bibliography

Related Research Articles

<span class="mw-page-title-main">Dipole</span> Electromagnetic phenomenon

In physics, a dipole is an electromagnetic phenomenon which occurs in two ways:

Electron cyclotron resonance (ECR) is a phenomenon observed in plasma physics, condensed matter physics, and accelerator physics. It happens when the frequency of incident radiation coincides with the natural frequency of rotation of electrons in magnetic fields. A free electron in a static and uniform magnetic field will move in a circle due to the Lorentz force. The circular motion may be superimposed with a uniform axial motion, resulting in a helix, or with a uniform motion perpendicular to the field resulting in a cycloid. The angular frequency of this cyclotron motion for a given magnetic field strength B is given by

<span class="mw-page-title-main">Rabi cycle</span> Quantum mechanical phenomenon

In physics, the Rabi cycle is the cyclic behaviour of a two-level quantum system in the presence of an oscillatory driving field. A great variety of physical processes belonging to the areas of quantum computing, condensed matter, atomic and molecular physics, and nuclear and particle physics can be conveniently studied in terms of two-level quantum mechanical systems, and exhibit Rabi flopping when coupled to an optical driving field. The effect is important in quantum optics, magnetic resonance and quantum computing, and is named after Isidor Isaac Rabi.

Plasma oscillations, also known as Langmuir waves, are rapid oscillations of the electron density in conducting media such as plasmas or metals in the ultraviolet region. The oscillations can be described as an instability in the dielectric function of a free electron gas. The frequency depends only weakly on the wavelength of the oscillation. The quasiparticle resulting from the quantization of these oscillations is the plasmon.

In plasma physics, an upper hybrid oscillation is a mode of oscillation of a magnetized plasma. It consists of a longitudinal motion of the electrons perpendicular to the magnetic field with the dispersion relation

In plasma physics, an electrostatic ion cyclotron wave is a longitudinal oscillation of the ions in a magnetized plasma, propagating nearly perpendicular to the magnetic field. The angle between the direction of propagation and the direction perpendicular to the magnetic field must be greater than about the square root of the mass ratio,

In plasma physics, a lower hybrid oscillation is a longitudinal oscillation of ions and electrons in a magnetized plasma. The direction of propagation must be very nearly perpendicular to the stationary magnetic field, within about me/mi radians. Otherwise the electrons can move along the field lines fast enough to shield the oscillations in potential. The frequency of oscillation is

In physics, magnetosonic waves, also known as magnetoacoustic waves, are low-frequency compressive waves driven by mutual interaction between an electrically conducting fluid and a magnetic field. They are associated with compression and rarefaction of both the fluid and the magnetic field, as well as with an effective tension that acts to straighten bent magnetic field lines. The properties of magnetosonic waves are highly dependent on the angle between the wavevector and the equilibrium magnetic field and on the relative importance of fluid and magnetic processes in the medium. They only propagate with frequencies much smaller than the ion cyclotron or ion plasma frequencies of the medium, and they are nondispersive at small amplitudes.

<span class="mw-page-title-main">Ion trap</span> Device for trapping charged particles

An ion trap is a combination of electric and/or magnetic fields used to capture charged particles — known as ions — often in a system isolated from an external environment. Atomic and molecular ion traps have a number of applications in physics and chemistry such as precision mass spectrometry, improved atomic frequency standards, and quantum computing. In comparison to neutral atom traps, ion traps have deeper trapping potentials that do not depend on the internal electronic structure of a trapped ion. This makes ion traps more suitable for the study of light interactions with single atomic systems. The two most popular types of ion traps are the Penning trap, which forms a potential via a combination of static electric and magnetic fields, and the Paul trap which forms a potential via a combination of static and oscillating electric fields.

The two-stream instability is a very common instability in plasma physics. It can be induced by an energetic particle stream injected in a plasma, or setting a current along the plasma so different species can have different drift velocities. The energy from the particles can lead to plasma wave excitation.

In plasma physics, an electromagnetic electron wave is a wave in a plasma which has a magnetic field component and in which primarily the electrons oscillate.

Plasma parameters define various characteristics of a plasma, an electrically conductive collection of charged and neutral particles of various species that responds collectively to electromagnetic forces. Such particle systems can be studied statistically, i.e., their behaviour can be described based on a limited number of global parameters instead of tracking each particle separately.

The gyroradius is the radius of the circular motion of a charged particle in the presence of a uniform magnetic field. In SI units, the non-relativistic gyroradius is given by where is the mass of the particle, is the component of the velocity perpendicular to the direction of the magnetic field, is the electric charge of the particle, and is the magnetic field flux density.

<span class="mw-page-title-main">Cyclotron resonance</span> Motion of charged particles

Cyclotron resonance describes the interaction of external forces with charged particles experiencing a magnetic field, thus moving on a circular path. It is named after the cyclotron, a cyclic particle accelerator that utilizes an oscillating electric field tuned to this resonance to add kinetic energy to charged particles.

In plasma physics, the Hasegawa–Mima equation, named after Akira Hasegawa and Kunioki Mima, is an equation that describes a certain regime of plasma, where the time scales are very fast, and the distance scale in the direction of the magnetic field is long. In particular the equation is useful for describing turbulence in some tokamaks. The equation was introduced in Hasegawa and Mima's paper submitted in 1977 to Physics of Fluids, where they compared it to the results of the ATC tokamak.

The Appleton–Hartree equation, sometimes also referred to as the Appleton–Lassen equation, is a mathematical expression that describes the refractive index for electromagnetic wave propagation in a cold magnetized plasma. The Appleton–Hartree equation was developed independently by several different scientists, including Edward Victor Appleton, Douglas Hartree and German radio physicist H. K. Lassen. Lassen's work, completed two years prior to Appleton and five years prior to Hartree, included a more thorough treatment of collisional plasma; but, published only in German, it has not been widely read in the English speaking world of radio physics. Further, regarding the derivation by Appleton, it was noted in the historical study by Gillmor that Wilhelm Altar first calculated the dispersion relation in 1926.

Static force fields are fields, such as a simple electric, magnetic or gravitational fields, that exist without excitations. The most common approximation method that physicists use for scattering calculations can be interpreted as static forces arising from the interactions between two bodies mediated by virtual particles, particles that exist for only a short time determined by the uncertainty principle. The virtual particles, also known as force carriers, are bosons, with different bosons associated with each force.

The Farley–Buneman instability, or FB instability, is a microscopic plasma instability named after Donald T. Farley and Oscar Buneman. It is similar to the ionospheric Rayleigh-Taylor instability.

A Pedersen current is an electric current formed in the direction of the applied electric field when a conductive material with charge carriers is acted upon by an external electric field and an external magnetic field. Pedersen currents emerge in a material where the charge carriers collide with particles in the conductive material at approximately the same frequency as the gyratory frequency induced by the magnetic field. Pedersen currents are associated with a Pedersen conductivity related to the applied magnetic field and the properties of the material.

Shneider-Miles scattering is the quasi-elastic scattering of electromagnetic radiation by charged particles in a small-scale medium with frequent particle collisions. Collisional scattering typically occurs in coherent microwave scattering of high neutral density, low ionization degree microplasmas such as atmospheric pressure laser-induced plasmas. Shneider-Miles scattering is characterized by a 90° phase shift between the incident and scattered waves and a scattering cross section proportional to the square of the incident driving frequency. Scattered waves are emitted in a short dipole radiation pattern. The variable phase shift present in semi-collisional scattering regimes allows for determination of a plasma's collisional frequency through coherent microwave scattering.