Condensed matter physics |
---|
This article may be too technical for most readers to understand.(March 2015) |
In physics, a plasmon is a quantum of plasma oscillation. Just as light (an optical oscillation) consists of photons, the plasma oscillation consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quantization of plasma oscillations, just like phonons are quantizations of mechanical vibrations. Thus, plasmons are collective (a discrete number) oscillations of the free electron gas density. For example, at optical frequencies, plasmons can couple with a photon to create another quasiparticle called a plasmon polariton.
The field of study and manipulation of plasmons is called plasmonics.
The plasmon was initially proposed in 1952 by David Pines and David Bohm [1] and was shown to arise from a Hamiltonian for the long-range electron-electron correlations. [2]
Since plasmons are the quantization of classical plasma oscillations, most of their properties can be derived directly from Maxwell's equations. [3]
Plasmons can be described in the classical picture as an oscillation of electron density with respect to the fixed positive ions in a metal. To visualize a plasma oscillation, imagine a cube of metal placed in an external electric field pointing to the right. Electrons will move to the left side (uncovering positive ions on the right side) until they cancel the field inside the metal. If the electric field is removed, the electrons move to the right, repelled by each other and attracted to the positive ions left bare on the right side. They oscillate back and forth at the plasma frequency until the energy is lost in some kind of resistance or damping. Plasmons are a quantization of this kind of oscillation.
Plasmons play a huge role in the optical properties of metals and semiconductors. Frequencies of light below the plasma frequency are reflected by a material because the electrons in the material screen the electric field of the light. Light of frequencies above the plasma frequency is transmitted by a material because the electrons in the material cannot respond fast enough to screen it. In most metals, the plasma frequency is in the ultraviolet, making them shiny (reflective) in the visible range. Some metals, such as copper [4] and gold, [5] have electronic interband transitions in the visible range, whereby specific light energies (colors) are absorbed, yielding their distinct color. In semiconductors, the valence electron plasmon frequency is usually in the deep ultraviolet, while their electronic interband transitions are in the visible range, whereby specific light energies (colors) are absorbed, yielding their distinct color [6] [7] which is why they are reflective. It has been shown that the plasmon frequency may occur in the mid-infrared and near-infrared region when semiconductors are in the form of nanoparticles with heavy doping. [8] [9]
The plasmon energy can often be estimated in the free electron model as
where is the conduction electron density, is the elementary charge, is the electron mass, the permittivity of free space, the reduced Planck constant and the plasmon frequency.
Surface plasmons are those plasmons that are confined to surfaces and that interact strongly with light resulting in a polariton. [10] They occur at the interface of a material exhibiting positive real part of their relative permittivity, i.e. dielectric constant, (e.g. vacuum, air, glass and other dielectrics) and a material whose real part of permittivity is negative at the given frequency of light, typically a metal or heavily doped semiconductors. In addition to opposite sign of the real part of the permittivity, the magnitude of the real part of the permittivity in the negative permittivity region should typically be larger than the magnitude of the permittivity in the positive permittivity region, otherwise the light is not bound to the surface (i.e. the surface plasmons do not exist) as shown in the famous book by Heinz Raether. [11] At visible wavelengths of light, e.g. 632.8 nm wavelength provided by a He-Ne laser, interfaces supporting surface plasmons are often formed by metals like silver or gold (negative real part permittivity) in contact with dielectrics such as air or silicon dioxide. The particular choice of materials can have a drastic effect on the degree of light confinement and propagation distance due to losses. Surface plasmons can also exist on interfaces other than flat surfaces, such as particles, or rectangular strips, v-grooves, cylinders, and other structures. Many structures have been investigated due to the capability of surface plasmons to confine light below the diffraction limit of light. One simple structure that was investigated was a multilayer system of copper and nickel. Mladenovic et al. report the use of the multilayers as if its one plasmonic material. [12] Oxidation of the copper layers is prevented with the addition of the nickel layers. It is an easy path the integration of plasmonics to use copper as the plasmonic material because it is the most common choice for metallic plating along with nickel. The multilayers serve as a diffractive grating for the incident light. Up to 40 percent transmission can be achieved at normal incidence with the multilayer system depending on the thickness ratio of copper to nickel. Therefore, the use of already popular metals in a multilayer structure prove to be solution for plasmonic integration.
Surface plasmons can play a role in surface-enhanced Raman spectroscopy and in explaining anomalies in diffraction from metal gratings (Wood's anomaly), among other things. Surface plasmon resonance is used by biochemists to study the mechanisms and kinetics of ligands binding to receptors (i.e. a substrate binding to an enzyme). Multi-parametric surface plasmon resonance can be used not only to measure molecular interactions but also nanolayer properties or structural changes in the adsorbed molecules, polymer layers or graphene, for instance.
Surface plasmons may also be observed in the X-ray emission spectra of metals. A dispersion relation for surface plasmons in the X-ray emission spectra of metals has been derived (Harsh and Agarwal). [13]
More recently surface plasmons have been used to control colors of materials. [14] This is possible since controlling the particle's shape and size determines the types of surface plasmons that can be coupled into and propagate across it. This, in turn, controls the interaction of light with the surface. These effects are illustrated by the historic stained glass which adorn medieval cathedrals. Some stained glass colors are produced by metal nanoparticles of a fixed size which interact with the optical field to give glass a vibrant red color. In modern science, these effects have been engineered for both visible light and microwave radiation. Much research goes on first in the microwave range because at this wavelength, material surfaces and samples can be produced mechanically because the patterns tend to be on the order of a few centimeters. The production of optical range surface plasmon effects involves making surfaces which have features <400 nm. This is much more difficult and has only recently become possible to do in any reliable or available way.
Recently, graphene has also been shown to accommodate surface plasmons, observed via near field infrared optical microscopy techniques [15] [16] and infrared spectroscopy. [17] Potential applications of graphene plasmonics mainly addressed the terahertz to midinfrared frequencies, such as optical modulators, photodetectors, biosensors. [18]
The position and intensity of plasmon absorption and emission peaks are affected by molecular adsorption, which can be used in molecular sensors. For example, a fully operational device detecting casein in milk has been prototyped, based on detecting a change in absorption of a gold layer. [19] Localized surface plasmons of metal nanoparticles can be used for sensing different types of molecules, proteins, etc.
Plasmons are being considered as a means of transmitting information on computer chips, since plasmons can support much higher frequencies (into the 100 THz range, whereas conventional wires become very lossy in the tens of GHz). However, for plasmon-based electronics to be practical, a plasmon-based amplifier analogous to the transistor, called a plasmonstor, needs to be created. [20]
Plasmons have also been proposed as a means of high-resolution lithography and microscopy due to their extremely small wavelengths; both of these applications have seen successful demonstrations in the lab environment.
Finally, surface plasmons have the unique capacity to confine light to very small dimensions, which could enable many new applications.
Surface plasmons are very sensitive to the properties of the materials on which they propagate. This has led to their use to measure the thickness of monolayers on colloid films, such as screening and quantifying protein binding events. Companies such as Biacore have commercialized instruments that operate on these principles. Optical surface plasmons are being investigated with a view to improve makeup by L'Oréal and others. [21]
In 2009, a Korean research team found a way to greatly improve organic light-emitting diode efficiency with the use of plasmons. [22]
A group of European researchers led by IMEC began work to improve solar cell efficiencies and costs through incorporation of metallic nanostructures (using plasmonic effects) that can enhance absorption of light into different types of solar cells: crystalline silicon (c-Si), high-performance III-V, organic, and dye-sensitized. [23] However, for plasmonic photovoltaic devices to function optimally, ultra-thin transparent conducting oxides are necessary. [24] Full color holograms using plasmonics [25] have been demonstrated.
Plasmon-soliton mathematically refers to the hybrid solution of nonlinear amplitude equation e.g. for a metal-nonlinear media considering both the plasmon mode and solitary solution. A soliplasmon resonance is on the other hand considered as a quasiparticle combining the surface plasmon mode with spatial soliton as a result of a resonant interaction. [26] [27] [28] [29] To achieve one dimensional solitary propagation in a plasmonic waveguide while the surface plasmons should be localized at the interface, the lateral distribution of the field envelope should also be unchanged.
A graphene-based waveguide is a suitable platform for supporting hybrid plasmon-solitons due to the large effective area and huge nonlinearity. [30] For example, the propagation of solitary waves in a graphene-dielectric heterostructure may appear as in the form of higher order solitons or discrete solitons resulting from the competition between diffraction and nonlinearity. [31] [32]
In physics, polaritons are bosonic quasiparticles resulting from strong coupling of electromagnetic waves (photon) with an electric or magnetic dipole-carrying excitation (state) of solid or liquid matter. Polaritons describe the crossing of the dispersion of light with any interacting resonance.
Quasinormal modes (QNM) are the modes of energy dissipation of a perturbed object or field, i.e. they describe perturbations of a field that decay in time.
Plasma oscillations, also known as Langmuir waves, are rapid oscillations of the electron density in conducting media such as plasmas or metals in the ultraviolet region. The oscillations can be described as an instability in the dielectric function of a free electron gas. The frequency depends only weakly on the wavelength of the oscillation. The quasiparticle resulting from the quantization of these oscillations is the plasmon.
A metamaterial is a type of material engineered to have a property, typically rarely observed in naturally occurring materials, that is derived not from the properties of the base materials but from their newly designed structures. Metamaterials are usually fashioned from multiple materials, such as metals and plastics, and are usually arranged in repeating patterns, at scales that are smaller than the wavelengths of the phenomena they influence. Their precise shape, geometry, size, orientation, and arrangement give them their "smart" properties of manipulating electromagnetic, acoustic, or even seismic waves: by blocking, absorbing, enhancing, or bending waves, to achieve benefits that go beyond what is possible with conventional materials.
Surface plasmon resonance (SPR) is a phenomenon that occurs where electrons in a thin metal sheet become excited by light that is directed to the sheet with a particular angle of incidence, and then travel parallel to the sheet. Assuming a constant light source wavelength and that the metal sheet is thin, the angle of incidence that triggers SPR is related to the refractive index of the material and even a small change in the refractive index will cause SPR to not be observed. This makes SPR a possible technique for detecting particular substances (analytes) and SPR biosensors have been developed to detect various important biomarkers.
Surface-enhanced Raman spectroscopy or surface-enhanced Raman scattering (SERS) is a surface-sensitive technique that enhances Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures such as plasmonic-magnetic silica nanotubes. The enhancement factor can be as much as 1010 to 1011, which means the technique may detect single molecules.
Extraordinary optical transmission (EOT) is the phenomenon of greatly enhanced transmission of light through a subwavelength aperture in an otherwise opaque metallic film which has been patterned with a regularly repeating periodic structure. Generally when light of a certain wavelength falls on a subwavelength aperture, it is diffracted isotropically in all directions evenly, with minimal far-field transmission. This is the understanding from classical aperture theory as described by Bethe. In EOT however, the regularly repeating structure enables much higher transmission efficiency to occur, up to several orders of magnitude greater than that predicted by classical aperture theory. It was first described in 1998.
Surface plasmons (SPs) are coherent delocalized electron oscillations that exist at the interface between any two materials where the real part of the dielectric function changes sign across the interface. SPs have lower energy than bulk plasmons which quantise the longitudinal electron oscillations about positive ion cores within the bulk of an electron gas.
A spaser or plasmonic laser is a type of laser which aims to confine light at a subwavelength scale far below Rayleigh's diffraction limit of light, by storing some of the light energy in electron oscillations called surface plasmon polaritons. The phenomenon was first described by David J. Bergman and Mark Stockman in 2003. The word spaser is an acronym for "surface plasmon amplification by stimulated emission of radiation". The first such devices were announced in 2009 by three groups: a 44-nanometer-diameter nanoparticle with a gold core surrounded by a dyed silica gain medium created by researchers from Purdue, Norfolk State and Cornell universities, a nanowire on a silver screen by a Berkeley group, and a semiconductor layer of 90 nm surrounded by silver pumped electrically by groups at the Eindhoven University of Technology and at Arizona State University. While the Purdue-Norfolk State-Cornell team demonstrated the confined plasmonic mode, the Berkeley team and the Eindhoven-Arizona State team demonstrated lasing in the so-called plasmonic gap mode. In 2018, a team from Northwestern University demonstrated a tunable nanolaser that can preserve its high mode quality by exploiting hybrid quadrupole plasmons as an optical feedback mechanism.
A photonic metamaterial (PM), also known as an optical metamaterial, is a type of electromagnetic metamaterial, that interacts with light, covering terahertz (THz), infrared (IR) or visible wavelengths. The materials employ a periodic, cellular structure.
A plasmonic-enhanced solar cell, commonly referred to simply as plasmonic solar cell, is a type of solar cell that converts light into electricity with the assistance of plasmons, but where the photovoltaic effect occurs in another material.
A metamaterial absorber is a type of metamaterial intended to efficiently absorb electromagnetic radiation such as light. Furthermore, metamaterials are an advance in materials science. Hence, those metamaterials that are designed to be absorbers offer benefits over conventional absorbers such as further miniaturization, wider adaptability, and increased effectiveness. Intended applications for the metamaterial absorber include emitters, photodetectors, sensors, spatial light modulators, infrared camouflage, wireless communication, and use in solar photovoltaics and thermophotovoltaics.
Surface plasmon polaritons (SPPs) are electromagnetic waves that travel along a metal–dielectric or metal–air interface, practically in the infrared or visible-frequency. The term "surface plasmon polariton" explains that the wave involves both charge motion in the metal and electromagnetic waves in the air or dielectric ("polariton").
A plasmonic metamaterial is a metamaterial that uses surface plasmons to achieve optical properties not seen in nature. Plasmons are produced from the interaction of light with metal-dielectric materials. Under specific conditions, the incident light couples with the surface plasmons to create self-sustaining, propagating electromagnetic waves known as surface plasmon polaritons (SPPs). Once launched, the SPPs ripple along the metal-dielectric interface. Compared with the incident light, the SPPs can be much shorter in wavelength.
Plasmonic nanoparticles are particles whose electron density can couple with electromagnetic radiation of wavelengths that are far larger than the particle due to the nature of the dielectric-metal interface between the medium and the particles: unlike in a pure metal where there is a maximum limit on what size wavelength can be effectively coupled based on the material size.
A localized surface plasmon (LSP) is the result of the confinement of a surface plasmon in a nanoparticle of size comparable to or smaller than the wavelength of light used to excite the plasmon. When a small spherical metallic nanoparticle is irradiated by light, the oscillating electric field causes the conduction electrons to oscillate coherently. When the electron cloud is displaced relative to its original position, a restoring force arises from Coulombic attraction between electrons and nuclei. This force causes the electron cloud to oscillate. The oscillation frequency is determined by the density of electrons, the effective electron mass, and the size and shape of the charge distribution. The LSP has two important effects: electric fields near the particle's surface are greatly enhanced and the particle's optical absorption has a maximum at the plasmon resonant frequency. Surface plasmon resonance can also be tuned based on the shape of the nanoparticle. The plasmon frequency can be related to the metal dielectric constant. The enhancement falls off quickly with distance from the surface and, for noble metal nanoparticles, the resonance occurs at visible wavelengths. Localized surface plasmon resonance creates brilliant colors in metal colloidal solutions.
Plasmonics or nanoplasmonics refers to the generation, detection, and manipulation of signals at optical frequencies along metal-dielectric interfaces in the nanometer scale. Inspired by photonics, plasmonics follows the trend of miniaturizing optical devices, and finds applications in sensing, microscopy, optical communications, and bio-photonics.
Graphene is a 2D nanosheet with atomic thin thickness in terms of 0.34 nm. Due to the ultrathin thickness, graphene showed many properties that are quite different from their bulk graphite counterparts. The most prominent advantages are known to be their high electron mobility and high mechanical strengths. Thus, it exhibits potential for applications in optics and electronics especially for the development of wearable devices as flexible substrates. More importantly, the optical absorption rate of graphene is 2.3% in the visible and near-infrared region. This broadband absorption characteristic also attracted great attention of the research community to exploit the graphene-based photodetectors/modulators.
Spoof surface plasmons, also known as spoof surface plasmon polaritons and designer surface plasmons, are surface electromagnetic waves in microwave and terahertz regimes that propagate along planar interfaces with sign-changing permittivities. Spoof surface plasmons are a type of surface plasmon polariton, which ordinarily propagate along metal and dielectric interfaces in infrared and visible frequencies. Since surface plasmon polaritons cannot exist naturally in microwave and terahertz frequencies due to dispersion properties of metals, spoof surface plasmons necessitate the use of artificially-engineered metamaterials.
In condensed matter physics, Pines' demon or, simply demon is a collective excitation of electrons which corresponds to electrons in different energy bands moving out of phase with each other. Equivalently, a demon corresponds to counter-propagating currents of electrons from different bands. Named after David Pines, who coined the term in 1956, demons are quantum mechanical excited states of a material belonging to a broader class of exotic collective excitations, such as the magnon, phason, or exciton. Pines' demon was first experimentally observed in 2023 by A. A. Husain et al. within the transition-metal oxide distrontium ruthenate (Sr2RuO4).