Sfermion

Last updated

In supersymmetric extension to the Standard Model (SM) of physics, a sfermion is a hypothetical spin-0 superpartner particle (sparticle) of its associated fermion. [1] [2] Each particle has a superpartner with spin that differs by 1/2. Fermions in the SM have spin-1/2 and, therefore, sfermions have spin 0. [3] [4]

Contents

The name 'sfermion' was formed by the general rule of prefixing an 's' to the name of its superpartner, denoting that it is a scalar particle with spin 0. For instance, the electron's superpartner is the selectron and the top quark's superpartner is the stop squark.

One corollary from supersymmetry is that sparticles have the same gauge numbers as their SM partners. This means that sparticleparticle pairs have the same color charge, weak isospin charge, and hypercharge (and consequently electric charge). Unbroken supersymmetry also implies that sparticleparticle pairs have the same mass. This is evidently not the case, since these sparticles would have already been detected. Thus, sparticles must have different masses from the particle partners and supersymmetry is said to be broken. [5] [6]

Fundamental sfermions

Squarks

Squarks (also quarkinos) [7] are the superpartners of quarks. These include the sup squark, sdown squark, scharm squark, sstrange squark, stop squark, and sbottom squark.

Squarks
SquarkSymbolAssociated quarkSymbol
First generation
Sup squark Up quark
Sdown squark Down quark
Second generation
Scharm squark Charm quark
Sstrange squark Strange quark
Third generation
Stop squark Top quark
Sbottom squark Bottom quark

Sleptons

Sleptons are the superpartners of leptons. These include the selectron, smuon, stau, and their corresponding sneutrino flavors. [8]

Sleptons
SleptonSymbolAssociated leptonSymbol
First generation
Selectron Electron
Selectron sneutrino Electron neutrino
Second generation
Smuon Muon
Smuon sneutrino Muon neutrino
Third generation
Stau Tau
Stau sneutrino Tau neutrino

See also

Related Research Articles

<span class="mw-page-title-main">Elementary particle</span> Subatomic particle having no known substructure

In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions, as well as the fundamental bosons, which generally are force particles that mediate interactions among fermions. A particle containing two or more elementary particles is a composite particle.

In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin 1/2, spin 3/2, etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and leptons and all composite particles made of an odd number of these, such as all baryons and many atoms and nuclei. Fermions differ from bosons, which obey Bose–Einstein statistics.

<span class="mw-page-title-main">Grand Unified Theory</span> Any particle physics model that theorizes the merging of the electromagnetic, weak and strong forces

In particle physics, a Grand Unified Theory (GUT) is a model in which, at high energies, the three gauge interactions of the Standard Model comprising the electromagnetic, weak, and strong forces are merged into a single force. Although this unified force has not been directly observed, many GUT models theorize its existence. If the unification of these three interactions is possible, it raises the possibility that there was a grand unification epoch in the very early universe in which these three fundamental interactions were not yet distinct.

<span class="mw-page-title-main">Subatomic particle</span> Particle smaller than an atom

In physics, a subatomic particle is a particle smaller than an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles, or an elementary particle, which is not composed of other particles. Particle physics and nuclear physics study these particles and how they interact.

In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories exist. Supersymmetry is a spacetime symmetry between two basic classes of particles: bosons, which have an integer-valued spin and follow Bose–Einstein statistics, and fermions, which have a half-integer-valued spin and follow Fermi–Dirac statistics. In supersymmetry, each particle from one class would have an associated particle in the other, known as its superpartner, the spin of which differs by a half-integer. For example, if the electron exists in a supersymmetric theory, then there would be a particle called a selectron, a bosonic partner of the electron. In the simplest supersymmetry theories, with perfectly "unbroken" supersymmetry, each pair of superpartners would share the same mass and internal quantum numbers besides spin. More complex supersymmetry theories have a spontaneously broken symmetry, allowing superpartners to differ in mass.

In supersymmetry, the neutralino is a hypothetical particle. In the Minimal Supersymmetric Standard Model (MSSM), a popular model of realization of supersymmetry at a low energy, there are four neutralinos that are fermions and are electrically neutral, the lightest of which is stable in an R-parity conserved scenario of MSSM. They are typically labeled
0
1
,
0
2
,
0
3
and
0
4
although sometimes is also used when is used to refer to charginos.

R-parity is a concept in particle physics. In the Minimal Supersymmetric Standard Model, baryon number and lepton number are no longer conserved by all of the renormalizable couplings in the theory. Since baryon number and lepton number conservation have been tested very precisely, these couplings need to be very small in order not to be in conflict with experimental data. R-parity is a symmetry acting on the Minimal Supersymmetric Standard Model (MSSM) fields that forbids these couplings and can be defined as

<span class="mw-page-title-main">Minimal Supersymmetric Standard Model</span> Simplest supersymmetric extension to the Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is an extension to the Standard Model that realizes supersymmetry. MSSM is the minimal supersymmetrical model as it considers only "the [minimum] number of new particle states and new interactions consistent with "Reality". Supersymmetry pairs bosons with fermions with graviton and large antigraviton based on semisecondary spin<autor Jaallmehr></Boris Bartošek> so every Standard Model particle has a superpartner yet undiscovered. If discovered, such superparticles could be candidates for dark matter, and could provide evidence for grand unification or the viability of string theory. The failure to find evidence for MSSM using the Large Hadron Collider has strengthened an inclination to abandon it.

In particle physics, a superpartner is a class of hypothetical elementary particles predicted by supersymmetry, which, among other applications, is one of the well-studied ways to extend the standard model of high-energy physics.

<span class="mw-page-title-main">Chargino</span>

In particle physics, the chargino is a hypothetical particle which refers to the mass eigenstates of a charged superpartner, i.e. any new electrically charged fermion predicted by supersymmetry. They are linear combinations of the charged wino and charged higgsinos. There are two charginos that are fermions and are electrically charged, which are typically labeled
±
1
and
±
2
, although sometimes and are also used to refer to charginos, when is used to refer to neutralinos. The heavier chargino can decay through the neutral Z boson to the lighter chargino. Both can decay through a charged W boson to a neutralino:

<span class="mw-page-title-main">Higgsino</span> Supersymmetric partner of the Higgs boson

In particle physics, for models with N=1 supersymmetry a higgsino, symbol

, is the superpartner of the Higgs field. A higgsino is a Dirac fermionic field with spin 12 and it refers to a weak isodoublet with hypercharge half under the Standard Model gauge symmetries. After electroweak symmetry breaking higgsino fields linearly mix with U(1) and SU(2) gauginos leading to four neutralinos and two charginos that refer to physical particles. While the two charginos are charged Dirac fermions, the neutralinos are electrically neutral Majorana fermions. In an R-parity-conserving version of the Minimal Supersymmetric Standard Model, the lightest neutralino typically becomes the lightest supersymmetric particle (LSP). The LSP is a particle physics candidate for the dark matter of the universe since it cannot decay to particles with lighter mass. A neutralino LSP, depending on its composition can be bino, wino or higgsino dominated in nature and can have different zones of mass values in order to satisfy the estimated dark matter relic density. Commonly, a higgsino dominated LSP is often referred as a higgsino, in spite of the fact that a higgsino is not a physical state in the true sense.

In particle physics, preons are point particles, conceived of as sub-components of quarks and leptons. The word was coined by Jogesh Pati and Abdus Salam, in 1974. Interest in preon models peaked in the 1980s but has slowed, as the Standard Model of particle physics continues to describe physics mostly successfully, and no direct experimental evidence for lepton and quark compositeness has been found. Preons come in four varieties, plus, anti-plus, zero and anti-zero. W bosons have six preons, and quarks and leptons have only three.

<span class="mw-page-title-main">Physics beyond the Standard Model</span> Theories trying to extend known physics

Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neutrino oscillations, matter–antimatter asymmetry, and the nature of dark matter and dark energy. Another problem lies within the mathematical framework of the Standard Model itself: the Standard Model is inconsistent with that of general relativity, and one or both theories break down under certain conditions, such as spacetime singularities like the Big Bang and black hole event horizons.

In particle physics, NMSSM is an acronym for Next-to-Minimal Supersymmetric Standard Model. It is a supersymmetric extension to the Standard Model that adds an additional singlet chiral superfield to the MSSM and can be used to dynamically generate the term, solving the -problem. Articles about the NMSSM are available for review.

In physics, naturalness is the aesthetic property that the dimensionless ratios between free parameters or physical constants appearing in a physical theory should take values "of order 1" and that free parameters are not fine-tuned. That is, a natural theory would have parameter ratios with values like 2.34 rather than 234000 or 0.000234.

In particle physics, a stop squark, symbol

, is the superpartner of the top quark as predicted by supersymmetry (SUSY). It is a sfermion, which means it is a spin-0 boson. While the top quark is the heaviest known quark, the stop squark is actually often the lightest squark in many supersymmetry models.

R-hadrons are hypothetical particles composed of a supersymmetric particle and at least one quark.

This page is a glossary of terms in string theory, including related areas such as supergravity, supersymmetry, and high energy physics.

In particle physics, the family symmetries or horizontal symmetries are various discrete, global, or local symmetries between quark-lepton families or generations. In contrast to the intrafamily or vertical symmetries which operate inside each family, these symmetries presumably underlie physics of the family flavors. They may be treated as a new set of quantum charges assigned to different families of quarks and leptons.

References

  1. He-sheng, Chen; Dongsheng, Du; Weiguo, Li (2005). High Energy Physics: Ichep 2004 - Proceedings Of The 32nd International Conference (In 2 Volumes). World Scientific. p. 109. ISBN   9789814481274 . Retrieved 30 September 2019.
  2. Masayuki, Nakahata; Y, Itow; Masato, Shiozawa (2004). Neutrino Oscillations And Their Origin, Proceedings Of The 4th International Workshop. World Scientific. ISBN   9789814485586 . Retrieved 30 September 2019.
  3. Baer, Howard; Tata, Xerxes (2006). Weak Scale Supersymmetry: From Superfields to Scattering Events. Cambridge University Press. p. 129. ISBN   9781139455077 . Retrieved 30 September 2019.
  4. Cline, David B (1997). Flavor-changing Neutral Currents: Present And Future Studies: Proceedings Of The Symposium. World Scientific. p. 229. ISBN   9789814545822 . Retrieved 30 September 2019.
  5. Seamus, Hegarty; Keith, Potter; Emanuele, Quercigh (1992). Joint International Lepton-photon Symposium And Europhysics Conference On High Energy Physics - Lp-hep '91 (In 2 Volumes). World Scientific. p. 500. ISBN   9789814555531 . Retrieved 30 September 2019.
  6. Khalil, Shaaban; Moretti, Stefano (2017). Supersymmetry Beyond Minimality: From Theory to Experiment. CRC Press. ISBN   9781315350875 . Retrieved 30 September 2019.
  7. Khlopov, Maxim Yu. (1999). Cosmoparticle Physics. World Scientific. p. 53. ISBN   978-981-02-3188-0 . Retrieved 23 June 2020.
  8. Masayuki, Nakahata; Y, Itow; Masato, Shiozawa (2004). Neutrino Oscillations And Their Origin, Proceedings Of The 4th International Workshop. World Scientific. p. 442. ISBN   9789814485586 . Retrieved 30 September 2019.