Protonium

Last updated
An illustration of the protonium atom. Structure of Protonium.svg
An illustration of the protonium atom.

Protonium (symbol: Pn)[ citation needed ], also known as antiprotonic hydrogen, is a type of exotic atom in which a proton (symbol: p) and an antiproton (symbol: p) are bound to each other. [1]

Contents

Since protonium is a bound system of a particle and its corresponding antiparticle, it is an example of a type of exotic atom called an onium.

Protonium has a mean lifetime of approximately 1.0  μs and a binding energy of −0.75  keV. [2]

Like all onia, protonium is a boson with all quantum numbers (baryon number, flavour quantum numbers, etc.) and electrical charge equal to 0.

Production

There are two known methods to generate protonium. One method involves violent particle collisions. The other method involves putting antiprotons and protons into the same magnetic cage. The latter method was first used during the experiment ATHENA (ApparaTus for High precision Experiment on Neutral Antimatter) at the CERN laboratory in Geneva in 2002, but it was not until 2006 that scientists realized protonium was also generated during the experiment. [3]

Reactions involving a proton and an antiproton at high energies give rise to many-particle final states. In fact, such reactions are the basis of particle colliders such as the Tevatron at Fermilab. Indirect searches for protonium at LEAR (Low Energy Antiproton Ring at CERN) have used antiprotons impinging on nuclei such as helium, with unclear results. Very low energy collisions in the range of 10  eV to 1  keV may lead to the formation of protonium.

Studies

Planned experiments will use traps as the source of low energy antiprotons. Such a beam would be allowed to impinge on atomic hydrogen targets, in the field of a laser, which is meant to excite the bound proton–antiproton pairs into an excited state of protonium with some efficiency (whose computation is an open theoretical problem). Unbound particles are rejected by bending them in a magnetic field. Since the protonium is uncharged, it will not be deflected by such a field. This undeflected protonium, if formed, would be allowed to traverse a meter of high vacuum, within which it is expected to decay via annihilation of the proton and antiproton. The decay products would give unmistakable signatures of the formation of protonium.

Theoretical studies of protonium have mainly used non-relativistic quantum mechanics. These give predictions for the binding energy and lifetime of the states. Computed lifetimes are in the range of 0.1 to 10 microseconds. Unlike the hydrogen atom, in which the dominant interactions are due to the Coulomb attraction of the electron and the proton, the constituents of protonium interact predominantly through the strong interaction. Thus multiparticle interactions involving mesons in intermediate states may be important. Hence the production and study of protonium would be of interest also for the understanding of internucleon forces.

See also

Related Research Articles

<span class="mw-page-title-main">Atom</span> Smallest unit of a chemical element

Atoms are the basic particles of the chemical elements. An atom consists of a nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished from each other by the number of protons that are in their atoms. For example, any atom that contains 11 protons is sodium, and any atom that contains 29 protons is copper. Atoms with the same number of protons but a different number of neutrons are called isotopes of the same element.

<span class="mw-page-title-main">Antimatter</span> Material composed of antiparticles of the corresponding particles of ordinary matter

In modern physics, antimatter is defined as matter composed of the antiparticles of the corresponding particles in "ordinary" matter, and can be thought of as matter with reversed charge, parity, and time, known as CPT reversal. Antimatter occurs in natural processes like cosmic ray collisions and some types of radioactive decay, but only a tiny fraction of these have successfully been bound together in experiments to form antiatoms. Minuscule numbers of antiparticles can be generated at particle accelerators; however, total artificial production has been only a few nanograms. No macroscopic amount of antimatter has ever been assembled due to the extreme cost and difficulty of production and handling. Nonetheless, antimatter is an essential component of widely available applications related to beta decay, such as positron emission tomography, radiation therapy, and industrial imaging.

<span class="mw-page-title-main">Antiparticle</span> Particle with opposite charges

In particle physics, every type of particle of "ordinary" matter is associated with an antiparticle with the same mass but with opposite physical charges. For example, the antiparticle of the electron is the positron. While the electron has a negative electric charge, the positron has a positive electric charge, and is produced naturally in certain types of radioactive decay. The opposite is also true: the antiparticle of the positron is the electron.

<span class="mw-page-title-main">Nuclear physics</span> Field of physics that studies atomic nuclei

Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter.

<span class="mw-page-title-main">Particle physics</span> Study of subatomic particles and forces

Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combination of protons and neutrons is called nuclear physics.

<span class="mw-page-title-main">Proton</span> Subatomic particle with positive charge

A proton is a stable subatomic particle, symbol
p
, H+, or 1H+ with a positive electric charge of +1 e (elementary charge). Its mass is slightly less than the mass of a neutron and approximately 1836 times the mass of an electron (the proton-to-electron mass ratio). Protons and neutrons, each with a mass of approximately one atomic mass unit, are jointly referred to as nucleons (particles present in atomic nuclei).

<span class="mw-page-title-main">Positron</span> Anti-particle to the electron

The positron or antielectron is the particle with an electric charge of +1e, a spin of 1/2, and the same mass as an electron. It is the antiparticle of the electron. When a positron collides with an electron, annihilation occurs. If this collision occurs at low energies, it results in the production of two or more photons.

<span class="mw-page-title-main">Positronium</span> Bound state of an electron and positron

Positronium (Ps) is a system consisting of an electron and its anti-particle, a positron, bound together into an exotic atom, specifically an onium. Unlike hydrogen, the system has no protons. The system is unstable: the two particles annihilate each other to predominantly produce two or three gamma-rays, depending on the relative spin states. The energy levels of the two particles are similar to that of the hydrogen atom. However, because of the reduced mass, the frequencies of the spectral lines are less than half of those for the corresponding hydrogen lines.

<span class="mw-page-title-main">Carlo Rubbia</span> Italian particle physicist and Nobel Prize winner (born 1934)

Carlo Rubbia is an Italian particle physicist and inventor who shared the Nobel Prize in Physics in 1984 with Simon van der Meer for work leading to the discovery of the W and Z particles at CERN.

<span class="mw-page-title-main">Antihydrogen</span> Exotic particle made of an antiproton and positron

Antihydrogen is the antimatter counterpart of hydrogen. Whereas the common hydrogen atom is composed of an electron and proton, the antihydrogen atom is made up of a positron and antiproton. Scientists hope that studying antihydrogen may shed light on the question of why there is more matter than antimatter in the observable universe, known as the baryon asymmetry problem. Antihydrogen is produced artificially in particle accelerators.

An exotic atom is an otherwise normal atom in which one or more sub-atomic particles have been replaced by other particles of the same charge. For example, electrons may be replaced by other negatively charged particles such as muons or pions. Because these substitute particles are usually unstable, exotic atoms typically have very short lifetimes and no exotic atom observed so far can persist under normal conditions.

<span class="mw-page-title-main">Antiproton</span> Subatomic particle

The antiproton,
p
, is the antiparticle of the proton. Antiprotons are stable, but they are typically short-lived, since any collision with a proton will cause both particles to be annihilated in a burst of energy.

ATHENA, also known as the AD-1 experiment, was an antimatter research project at the Antiproton Decelerator at CERN, Geneva. In August 2002, it was the first experiment to produce 50,000 low-energy antihydrogen atoms, as reported in Nature. In 2005, ATHENA was disbanded and many of the former members of the research team worked on the subsequent ALPHA experiment and AEgIS experiment.

<span class="mw-page-title-main">Antiprotonic helium</span> Exotic matter with an antiproton in place of an electron

Antiprotonic helium is a three-body atom composed of an antiproton and an electron orbiting around a helium nucleus. It is thus made partly of matter, and partly of antimatter. The atom is electrically neutral, since an electron and an antiproton each have a charge of −1 e, whereas a helium nucleus has a charge of +2 e. It has the longest lifetime of any experimentally produced matter–antimatter bound state.

<span class="mw-page-title-main">Bevatron</span> Particle accelerator at Lawrence Berkeley National Laboratory

The Bevatron was a particle accelerator — specifically, a weak-focusing proton synchrotron — at Lawrence Berkeley National Laboratory, U.S., which began operating in 1954. The antiproton was discovered there in 1955, resulting in the 1959 Nobel Prize in physics for Emilio Segrè and Owen Chamberlain. It accelerated protons into a fixed target, and was named for its ability to impart energies of billions of eV.

<span class="mw-page-title-main">Antiproton Decelerator</span> Particle storage ring at CERN, Switzerland

The Antiproton Decelerator (AD) is a storage ring at the CERN laboratory near Geneva. It was built from the Antiproton Collector (AC) to be a successor to the Low Energy Antiproton Ring (LEAR) and started operation in the year 2000. Antiprotons are created by impinging a proton beam from the Proton Synchrotron on a metal target. The AD decelerates the resultant antiprotons to an energy of 5.3 MeV, which are then ejected to one of several connected experiments.

<span class="mw-page-title-main">Low Energy Antiproton Ring</span> Former CERN infrastructure

The Low Energy Anti-Proton Ring (LEAR) was a particle accelerator at CERN which operated from 1982 until 1996. The ring was designed to decelerate and store antiprotons, to study the properties of antimatter and to create atoms of antihydrogen. Antiprotons for the ring were created by the CERN Proton Synchrotron via the Antiproton Collector and the Antiproton Accumulator (AA). The creation of at least nine atoms of antihydrogen were confirmed by the PS210 experiment in 1995.

Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA), AD-3, is an experiment at the Antiproton Decelerator (AD) at CERN. The experiment was proposed in 1997, started collecting data in 2002 by using the antiprotons beams from the AD, and will continue in future under the AD and ELENA decelerator facility.

High-precision experiments could reveal small previously unseen differences between the behavior of matter and antimatter. This prospect is appealing to physicists because it may show that nature is not Lorentz symmetric.

<span class="mw-page-title-main">ALPHA experiment</span> Antimatter gravitation experiment

The Antihydrogen Laser Physics Apparatus (ALPHA), also known as AD-5, is an experiment at CERN's Antiproton Decelerator, designed to trap antihydrogen in a magnetic trap in order to study its atomic spectra. The ultimate goal of the experiment is to test CPT symmetry through comparing the respective spectra of hydrogen and antihydrogen. Scientists taking part in ALPHA include former members of the ATHENA experiment (AD-1), the first to produce cold antihydrogen in 2002.

References

  1. Zurlo, N.; et al. (2006). "Production Of Slow Protonium In Vacuum". Hyperfine Interactions . 172 (1–3): 97–105. arXiv: 0801.3193 . Bibcode:2006HyInt.172...97Z. doi:10.1007/s10751-007-9529-0. S2CID   119182686.
  2. Abdel-Raouf, Mohamed Assad (2009). "Binding energy of protonium ions". Journal of Physics: Conference Series. 194 (7): 072003. Bibcode:2009JPhCS.194g2003A. doi: 10.1088/1742-6596/194/7/072003 .
  3. L. Venturelli; et al. (Athena collaboration) (August 2007). "Protonium production in ATHENA" (PDF). Nuclear Instruments and Methods in Physics Research Section B . 261 (1–2): 40–43. Bibcode:2007NIMPB.261...40V. doi:10.1016/j.nimb.2007.04.135.

Further reading