Strong interaction

Last updated
An animation of color confinement, a property of the strong interaction. If energy is supplied to the quarks as shown, the gluon tube connecting quarks elongates until it reaches a point where it "snaps" and the energy added to the system results in the formation of a quark-antiquark pair. Thus single quarks are never seen in isolation. Gluon tube-color confinement animation.gif
An animation of color confinement, a property of the strong interaction. If energy is supplied to the quarks as shown, the gluon tube connecting quarks elongates until it reaches a point where it "snaps" and the energy added to the system results in the formation of a quark–antiquark pair. Thus single quarks are never seen in isolation.
An animation of the strong interaction between a proton and a neutron, mediated by pions. The colored small double circles inside are gluons. Nuclear Force anim smaller.gif
An animation of the strong interaction between a proton and a neutron, mediated by pions. The colored small double circles inside are gluons.

In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is a fundamental interaction that confines quarks into protons, neutrons, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the nuclear force.

Contents

Most of the mass of a proton or neutron is the result of the strong interaction energy; the individual quarks provide only about 1% of the mass of a proton. At the range of 10−15 m (1 femtometer, slightly more than the radius of a nucleon), the strong force is approximately 100 times as strong as electromagnetism, 106 times as strong as the weak interaction, and 1038 times as strong as gravitation. [1]

In the context of atomic nuclei, the force binds protons and neutrons together to form a nucleus and is called the nuclear force (or residual strong force). [2] Because the force is mediated by massive, short lived mesons on this scale, the residual strong interaction obeys a distance-dependent behavior between nucleons that is quite different from when it is acting to bind quarks within hadrons. There are also differences in the binding energies of the nuclear force with regard to nuclear fusion vs nuclear fission. Nuclear fusion accounts for most energy production in the Sun and other stars. Nuclear fission allows for decay of radioactive elements and isotopes, although it is often mediated by the weak interaction. Artificially, the energy associated with the nuclear force is partially released in nuclear power and nuclear weapons, both in uranium or plutonium-based fission weapons and in fusion weapons like the hydrogen bomb. [3] [4]

History

Before 1971, physicists were uncertain as to how the atomic nucleus was bound together. It was known that the nucleus was composed of protons and neutrons and that protons possessed positive electric charge, while neutrons were electrically neutral. By the understanding of physics at that time, positive charges would repel one another and the positively charged protons should cause the nucleus to fly apart. However, this was never observed. New physics was needed to explain this phenomenon.

A stronger attractive force was postulated to explain how the atomic nucleus was bound despite the protons' mutual electromagnetic repulsion. This hypothesized force was called the strong force, which was believed to be a fundamental force that acted on the protons and neutrons that make up the nucleus.

In 1964, Murray Gell-Mann, and separately George Zweig, proposed that baryons, which include protons and neutrons, and mesons were composed of elementary particles. Zweig called the elementary particles "aces" while Gell-Mann called them "quarks"; the theory came to be called the quark model. [5] The strong attraction between nucleons was the side-effect of a more fundamental force that bound the quarks together into protons and neutrons. The theory of quantum chromodynamics explains that quarks carry what is called a color charge, although it has no relation to visible color. [6] Quarks with unlike color charge attract one another as a result of the strong interaction, and the particle that mediates this was called the gluon.

Behavior of the strong interaction

The strong interaction is observable at two ranges, and mediated by different force carriers in each one. On a scale less than about 0.8  fm (roughly the radius of a nucleon), the force is carried by gluons and holds quarks together to form protons, neutrons, and other hadrons. On a larger scale, up to about 3 fm, the force is carried by mesons and binds nucleons (protons and neutrons) together to form the nucleus of an atom. [2] In the former context, it is often known as the color force, and is so strong that if hadrons are struck by high-energy particles, they produce jets of massive particles instead of emitting their constituents (quarks and gluons) as freely moving particles. This property of the strong force is called color confinement.

Two layers of strong interaction
Interactionrangeheldcarrierresult
Strong< 0.8 fmquarkgluonhadron
Residual Strong1–3 fmhadronmesonnucleus

Within hadrons

The fundamental couplings of the strong interaction, from left to right: gluon radiation, gluon splitting and gluon self-coupling. Gluon coupling.svg
The fundamental couplings of the strong interaction, from left to right: gluon radiation, gluon splitting and gluon self-coupling.

The word strong is used since the strong interaction is the "strongest" of the four fundamental forces. At a distance of 10−15 m, its strength is around 100 times that of the electromagnetic force, some 106 times as great as that of the weak force, and about 1038 times that of gravitation.

The strong force is described by quantum chromodynamics (QCD), a part of the Standard Model of particle physics. Mathematically, QCD is a non-abelian gauge theory based on a local (gauge) symmetry group called SU(3).

The force carrier particle of the strong interaction is the gluon, a massless gauge boson. Gluons are thought to interact with quarks and other gluons by way of a type of charge called color charge. Color charge is analogous to electromagnetic charge, but it comes in three types (±red, ±green, and ±blue) rather than one, which results in different rules of behavior. These rules are described by quantum chromodynamics (QCD), the theory of quark–gluon interactions. Unlike the photon in electromagnetism, which is neutral, the gluon carries a color charge. Quarks and gluons are the only fundamental particles that carry non-vanishing color charge, and hence they participate in strong interactions only with each other. The strong force is the expression of the gluon interaction with other quark and gluon particles.

All quarks and gluons in QCD interact with each other through the strong force. The strength of interaction is parameterized by the strong coupling constant. This strength is modified by the gauge color charge of the particle, a group-theoretical property.

The strong force acts between quarks. Unlike all other forces (electromagnetic, weak, and gravitational), the strong force does not diminish in strength with increasing distance between pairs of quarks. After a limiting distance (about the size of a hadron) has been reached, it remains at a strength of about 10000  N , no matter how much farther the distance between the quarks. [7] :164 As the separation between the quarks grows, the energy added to the pair creates new pairs of matching quarks between the original two; hence it is impossible to isolate quarks. The explanation is that the amount of work done against a force of 10000 N is enough to create particle–antiparticle pairs within a very short distance. The energy added to the system by pulling two quarks apart would create a pair of new quarks that will pair up with the original ones. In QCD, this phenomenon is called color confinement; as a result only hadrons, not individual free quarks, can be observed. The failure of all experiments that have searched for free quarks is considered to be evidence of this phenomenon.

The elementary quark and gluon particles involved in a high energy collision are not directly observable. The interaction produces jets of newly created hadrons that are observable. Those hadrons are created, as a manifestation of mass–energy equivalence, when sufficient energy is deposited into a quark–quark bond, as when a quark in one proton is struck by a very fast quark of another impacting proton during a particle accelerator experiment. However, quark–gluon plasmas have been observed. [8]

Between hadrons

A diagram (shown by the animation in the lead) with the individual quark constituents shown, to illustrate how the fundamental strong interaction gives rise to the nuclear force. Straight lines are quarks, while multi-colored loops are gluons (the carriers of the fundamental force). Pn Scatter Quarks.svg
A diagram (shown by the animation in the lead) with the individual quark constituents shown, to illustrate how the fundamental strong interaction gives rise to the nuclear force. Straight lines are quarks, while multi-colored loops are gluons (the carriers of the fundamental force).

While color confinement implies that the strong force acts without distance-diminishment between pairs of quarks in compact collections of bound quarks (hadrons), at distances approaching or greater than the radius of a proton, a residual force (described below) remains. This residual force does diminish rapidly with distance, and is thus very short-range (effectively a few femtometres). It manifests as a force between the "colorless" hadrons, and is known as the nuclear force or residual strong force (and historically as the strong nuclear force).

The nuclear force acts between hadrons, known as mesons and baryons. This "residual strong force", acting indirectly, transmits gluons that form part of the virtual π and ρ   mesons, which, in turn, transmit the force between nucleons that holds the nucleus (beyond hydrogen-1 nucleus) together. [9]

The residual strong force is thus a minor residuum of the strong force that binds quarks together into protons and neutrons. This same force is much weaker between neutrons and protons, because it is mostly neutralized within them, in the same way that electromagnetic forces between neutral atoms (van der Waals forces) are much weaker than the electromagnetic forces that hold electrons in association with the nucleus, forming the atoms. [7]

Unlike the strong force, the residual strong force diminishes with distance, and does so rapidly. The decrease is approximately as a negative exponential power of distance, though there is no simple expression known for this; see Yukawa potential . The rapid decrease with distance of the attractive residual force and the less rapid decrease of the repulsive electromagnetic force acting between protons within a nucleus, causes the instability of larger atomic nuclei, such as all those with atomic numbers larger than 82 (the element lead).

Although the nuclear force is weaker than the strong interaction itself, it is still highly energetic: transitions produce gamma rays. The mass of a nucleus is significantly different from the summed masses of the individual nucleons. This mass defect is due to the potential energy associated with the nuclear force. Differences between mass defects power nuclear fusion and nuclear fission.

Unification

The so-called Grand Unified Theories (GUT) aim to describe the strong interaction and the electroweak interaction as aspects of a single force, similarly to how the electromagnetic and weak interactions were unified by the Glashow–Weinberg–Salam model into electroweak interaction. The strong interaction has a property called asymptotic freedom, wherein the strength of the strong force diminishes at higher energies (or temperatures). The theorized energy where its strength becomes equal to the electroweak interaction is the grand unification energy. However, no Grand Unified Theory has yet been successfully formulated to describe this process, and Grand Unification remains an unsolved problem in physics.

If GUT is correct, after the Big Bang and during the electroweak epoch of the universe, the electroweak force separated from the strong force. Accordingly, a grand unification epoch is hypothesized to have existed prior to this.

See also

Related Research Articles

In physics, the fundamental interactions or fundamental forces are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist:

<span class="mw-page-title-main">Elementary particle</span> Subatomic particle having no known substructure

In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a consequence of flavor and color combinations and antimatter, the fermions and bosons are known to have 48 and 13 variations, respectively. Among the 61 elementary particles embraced by the Standard Model number: electrons and other leptons, quarks, and the fundamental bosons. Subatomic particles such as protons or neutrons, which contain two or more elementary particles, are known as composite particles.

<span class="mw-page-title-main">Gluon</span> Elementary particle that mediates the strong force

A gluon is a type of massless elementary particle that mediates the strong interaction between quarks, acting as the exchange particle for the interaction. Gluons are massless vector bosons, thereby having a spin of 1. Through the strong interaction, gluons bind quarks into groups according to quantum chromodynamics (QCD), forming hadrons such as protons and neutrons.

<span class="mw-page-title-main">Hadron</span> Composite subatomic particle

In particle physics, a hadron is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the electric force. Most of the mass of ordinary matter comes from two hadrons: the proton and the neutron, while most of the mass of the protons and neutrons is in turn due to the binding energy of their constituent quarks, due to the strong force.

<span class="mw-page-title-main">Nucleon</span> Particle that makes up the atomic nucleus (proton or neutron)

In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number.

<span class="mw-page-title-main">Particle physics</span> Study of subatomic particles and forces

Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combination of protons and neutrons is called nuclear physics.

<span class="mw-page-title-main">Quark</span> Elementary particle, main constituent of matter

A quark is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly observable matter is composed of up quarks, down quarks and electrons. Owing to a phenomenon known as color confinement, quarks are never found in isolation; they can be found only within hadrons, which include baryons and mesons, or in quark–gluon plasmas. For this reason, much of what is known about quarks has been drawn from observations of hadrons.

<span class="mw-page-title-main">Quantum chromodynamics</span> Theory of the strong nuclear interactions

In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of quantum field theory called a non-abelian gauge theory, with symmetry group SU(3). The QCD analog of electric charge is a property called color. Gluons are the force carriers of the theory, just as photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of particle physics. A large body of experimental evidence for QCD has been gathered over the years.

<span class="mw-page-title-main">Standard Model</span> Theory of forces and subatomic particles

The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

<span class="mw-page-title-main">Subatomic particle</span> Particle smaller than an atom

In physics, a subatomic particle is a particle smaller than an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles, or an elementary particle, which is not composed of other particles. Particle physics and nuclear physics study these particles and how they interact. Most force carrying particles like photons or gluons are called bosons and, although they have discrete quanta of energy, do not have rest mass or discrete diameters and are unlike the former particles that have rest mass and cannot overlap or combine which are called fermions.

Quark matter or QCD matter refers to any of a number of hypothetical phases of matter whose degrees of freedom include quarks and gluons, of which the prominent example is quark-gluon plasma. Several series of conferences in 2019, 2020, and 2021 were devoted to this topic.

In particle physics, flavour or flavor refers to the species of an elementary particle. The Standard Model counts six flavours of quarks and six flavours of leptons. They are conventionally parameterized with flavour quantum numbers that are assigned to all subatomic particles. They can also be described by some of the family symmetries proposed for the quark-lepton generations.

The QCD vacuum is the quantum vacuum state of quantum chromodynamics (QCD). It is an example of a non-perturbative vacuum state, characterized by non-vanishing condensates such as the gluon condensate and the quark condensate in the complete theory which includes quarks. The presence of these condensates characterizes the confined phase of quark matter.

<span class="mw-page-title-main">Nuclear force</span> Force that acts between the protons and neutrons of atoms

The nuclear force is a force that acts between hadrons, most commonly observed between protons and neutrons of atoms. Neutrons and protons, both nucleons, are affected by the nuclear force almost identically. Since protons have charge +1 e, they experience an electric force that tends to push them apart, but at short range the attractive nuclear force is strong enough to overcome the electrostatic force. The nuclear force binds nucleons into atomic nuclei.

<span class="mw-page-title-main">Quark–gluon plasma</span> Phase of quantum chromodynamics (QCD)

Quark–gluon plasma is an interacting localized assembly of quarks and gluons at thermal and chemical (abundance) equilibrium. The word plasma signals that free color charges are allowed. In a 1987 summary, Léon van Hove pointed out the equivalence of the three terms: quark gluon plasma, quark matter and a new state of matter. Since the temperature is above the Hagedorn temperature—and thus above the scale of light u,d-quark mass—the pressure exhibits the relativistic Stefan-Boltzmann format governed by temperature to the fourth power and many practically massless quark and gluon constituents. It can be said that QGP emerges to be the new phase of strongly interacting matter which manifests its physical properties in terms of nearly free dynamics of practically massless gluons and quarks. Both quarks and gluons must be present in conditions near chemical (yield) equilibrium with their colour charge open for a new state of matter to be referred to as QGP.

<span class="mw-page-title-main">Atomic nucleus</span> Core of an atom; composed of nucleons (protons and neutrons)

The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron in 1932, models for a nucleus composed of protons and neutrons were quickly developed by Dmitri Ivanenko and Werner Heisenberg. An atom is composed of a positively charged nucleus, with a cloud of negatively charged electrons surrounding it, bound together by electrostatic force. Almost all of the mass of an atom is located in the nucleus, with a very small contribution from the electron cloud. Protons and neutrons are bound together to form a nucleus by the nuclear force.

Quantum chromodynamics binding energy, gluon binding energy or chromodynamic binding energy is the energy binding quarks together into hadrons. It is the energy of the field of the strong force, which is mediated by gluons. Motion-energy and interaction-energy contribute most of the hadron's mass.

<span class="mw-page-title-main">History of subatomic physics</span> Chronological listing of experiments and discoveries

The idea that matter consists of smaller particles and that there exists a limited number of sorts of primary, smallest particles in nature has existed in natural philosophy at least since the 6th century BC. Such ideas gained physical credibility beginning in the 19th century, but the concept of "elementary particle" underwent some changes in its meaning: notably, modern physics no longer deems elementary particles indestructible. Even elementary particles can decay or collide destructively; they can cease to exist and create (other) particles in result.

Quantum hadrodynamics (QHD) is an effective field theory pertaining to interactions between hadrons, that is, hadron-hadron interactions or the inter-hadron force. It is "a framework for describing the nuclear many-body problem as a relativistic system of baryons and mesons". Quantum hadrodynamics is closely related and partly derived from quantum chromodynamics, which is the theory of interactions between quarks and gluons that bind them together to form hadrons, via the strong force.

References

  1. Relative strength of interaction varies with distance. See for instance Matt Strassler's essay, "The strength of the known forces".
  2. 1 2 "The four forces: the strong interaction Duke University Astrophysics Dept website".
  3. Ragheb, Magdi. "Chapter 4 Nuclear Processes, The Strong Force" (PDF). University of Illinois. Archived from the original (PDF) on 2012-12-18. Retrieved 2023-10-03.
  4. "Lesson 13: Binding energy and mass defect". Furry Elephant physics educational site. Archived from the original on 2023-05-28. Retrieved 2023-10-03.
  5. Wilczek, Frank (1982). "Quantum chromodynamics: The modern theory of the strong interaction". Annual Review of Nuclear and Particle Science. 32 (1): 177–209. Bibcode:1982ARNPS..32..177W. doi:10.1146/annurev.ns.32.120182.001141.
  6. Feynman, R.P. (1985). QED: The Strange Theory of Light and Matter. Princeton University Press. p. 136. ISBN   978-0-691-08388-9. The idiot physicists, unable to come up with any wonderful Greek words anymore, call this type of polarization by the unfortunate name of 'color', which has nothing to do with color in the normal sense.
  7. 1 2 Fritzsch, H. (1983). Quarks: The Stuff of Matter . Basic Books. pp.  167–168. ISBN   978-0-465-06781-7.
  8. "Quark–gluon plasma is the most primordial state of matter". About.com Education. Archived from the original on 2017-01-18. Retrieved 2017-01-16.
  9. "3. The Strong Force" (PDF). Department of Applied Mathematics and Theoretical Physics, University of Cambridge. Archived from the original (PDF) on 22 October 2021. Retrieved 10 January 2023.

Further reading