Gordon L. Kane

Last updated
Gordon Kane
Gordykane.jpg
Gordon Kane, Professor of Physics
BornJanuary 19, 1937 (1937-01-19) (age 86)
Nationality American
Alma mater University of Illinois (Ph.D.)
University of Minnesota (B.A.)
Known for Supersymmetry
Higgs Physics
String Phenomenology
Dark Matter and Cosmology
Awards Lilienfeld Prize (2012), Sakurai Prize (2017)
Scientific career
Fields Physics
Institutions University of Michigan
Thesis Analysis of the angular distribution of pion-nucleon scattering within the framework of the Mandelstam representation (1963)
Doctoral advisor J.D. Jackson

Gordon Leon Kane (born January 19, 1937) is Victor Weisskopf Distinguished University Professor at the University of Michigan and director emeritus at the Leinweber Center for Theoretical Physics (LCTP), a leading center for the advancement of theoretical physics. He was director of the LCTP from 2005 to 2011 and Victor Weisskopf Collegiate Professor of Physics from 2002 - 2011. He received the Lilienfeld Prize from the American Physical Society in 2012, and the J. J. Sakurai Prize for Theoretical Particle Physics in 2017.

Contents

Kane is an internationally recognized scientific leader in theoretical and phenomenological particle physics, and theories for physics beyond the Standard Model. In recent years he has been a leader in string phenomenology. Kane has been with the University of Michigan since 1965.

Work

Early fundamental research

In 1982 Kane co-led the international Snowmass working group study that pointed to the Superconducting Super Collider (SSC) as the next scientific direction for particle physics. Kane suggested, along with Jack Gunion, at Snowmass studies that Higgs bosons could be best detected at the SSC or LHC via the rare gamma gamma decay mode (finally documented in Nucl. Phys. B 299 (1988) 231, also with Wudka.). The SSC project was finally halted and replaced by the CERN Large Hadron Collider (LHC) at Geneva where this was indeed the discovery method. The LHC continues to probe for the presence of supersymmetry, the leading candidate model for new physics beyond the Standard Model.

Around the same time Kane and Leveille [1] performed the first calculation of the Feynman rules for gluinos, and of the production of gluinos at colliders, which turns out to be one of the most important ways to discover supersymmetry at the LHC.

Gordon Kane is also well known for his work with Howard Haber, putting together and elucidating the structure of the Minimal Supersymmetric Standard Model (MSSM) into a complete and calculable context in 1984. Their seminal article published in 1985 [2] remains one of the single most important references on supersymmetry and the MSSM. A detailed companion report was published in 2002. [3]

Kane made important early contributions to the study of the Higgs bosons, including an upper limit on the Higgs boson mass, [4] implications of electric dipole moments, the muon g-2 experiment, the study of dark matter and its detection, [5] and to early supergravity [6] and string theory phenomenology. With collaborators he pointed out the potential LHC inverse problem and solutions towards its resolution. [7]

Recent notable research

Kane's more recent work has been in the development of testable models based on string theory, in particular those based on G2 compactifications of M-Theory, a predictive approach that might explain the hierarchy between the weak scale and the Planck scale. [8] With colleagues, he has recently re-emphasized the role of neutralino dark matter in the context of cosmic ray data, [9] [10] as well as the importance of connecting dark matter and the LHC - in particular focusing on light gluinos and light neutralinos (the putative superparteners of the gluon and W boson respectively) that arise in supergravity and string theory motivated models. [11] He has argued that these ideas form a consistent framework with a non-thermal cosmological history of the universe.

Recently, he and collaborators have generalized results of compactified string theories, and in particular have shown that scalar superpartners should have masses of order tens of TeV. He and collaborators have also proposed string motivated explanations for major questions in particle theory, including the so-called "little hierarchy" or "fine-tuning" problem, and major related questions in cosmology, including understanding the ratio of the baryonic matter to dark matter in the universe.

Scientific summary

Kane has published over 200 research articles, with over 20,000 citations and an h-number of 65. He has written or co-authored or edited at least 10 physics books, and has 3 influential Scientific American particle physics articles. A chapter from one book was reprinted in an anthology, with other chapters by Galileo, Newton, Einstein, Hawking, Maxwell, Heisenberg, Weinberg. Two of his more recent books includes “Perspectives on Supersymmetry”, and “Perspectives on LHC Physics”, both of which provide extensive reviews of the field.

Kane has been elected a Fellow of the American Physical Society, a Fellow of the American Association for the Advancement of Science, a Fellow of the British Institute of Physics, and a Guggenheim Fellow. He has served on many government advisory panels, most recently as chair of the theoretical physics subpanel on the three-year Committee of Visitors of the Physical and Mathematical Sciences Division of the National Science Foundation, the highest evaluation panel the NSF has. Kane also has been on several national laboratory program policy committees. He has served on the international advisory committees of over 40 national and international meetings. He was a winner of the 1998 Physics Today Essay Contest "Physics Tomorrow". He has been Delphasus Lecturer at the University of California at Santa Cruz, distinguished visiting speaker at the University of California Davis, Dozer Lecturer at Ben-Gurion University, Lewiner Lecturer at the Technion in Tel-Aviv, and an American Physical Society Centennial Speaker. In 2017, Kane was awarded the prestigious, J. J. Sakurai Prize for Theoretical Particle Physics. The prize, considered one of the most prestigious in physics, was awarded for his work on the theory of the properties, reactions, and signatures of the Higgs boson. [12]

He has two popular books for any curious reader, “The Particle Garden”, focusing on the Standard Model, and “Supersymmetry and Beyond” focusing on physics beyond the Standard Model, including string/M-theory. And he is a frequent contributor to Edge.org.

Books

Related Research Articles

<span class="mw-page-title-main">Standard Model</span> Theory of forces and subatomic particles

The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories exist. Supersymmetry is a spacetime symmetry between two basic classes of particles: bosons, which have an integer-valued spin and follow Bose–Einstein statistics, and fermions, which have a half-integer-valued spin and follow Fermi–Dirac statistics. In supersymmetry, each particle from one class would have an associated particle in the other, known as its superpartner, the spin of which differs by a half-integer. For example, if the electron exists in a supersymmetric theory, then there would be a particle called a selectron, a bosonic partner of the electron. In the simplest supersymmetry theories, with perfectly "unbroken" supersymmetry, each pair of superpartners would share the same mass and internal quantum numbers besides spin. More complex supersymmetry theories have a spontaneously broken symmetry, allowing superpartners to differ in mass.

<span class="mw-page-title-main">Technicolor (physics)</span> Hypothetical model through which W and Z bosons acquire mass

Technicolor theories are models of physics beyond the Standard Model that address electroweak gauge symmetry breaking, the mechanism through which W and Z bosons acquire masses. Early technicolor theories were modelled on quantum chromodynamics (QCD), the "color" theory of the strong nuclear force, which inspired their name.

R-parity is a concept in particle physics. In the Minimal Supersymmetric Standard Model, baryon number and lepton number are no longer conserved by all of the renormalizable couplings in the theory. Since baryon number and lepton number conservation have been tested very precisely, these couplings need to be very small in order not to be in conflict with experimental data. R-parity is a symmetry acting on the Minimal Supersymmetric Standard Model (MSSM) fields that forbids these couplings and can be defined as

<span class="mw-page-title-main">Minimal Supersymmetric Standard Model</span> Simplest supersymmetric extension to the Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is an extension to the Standard Model that realizes supersymmetry. MSSM is the minimal supersymmetrical model as it considers only "the [minimum] number of new particle states and new interactions consistent with "Reality". Supersymmetry pairs bosons with fermions, so every Standard Model particle has a superpartner yet undiscovered. If discovered, such superparticles could be candidates for dark matter, and could provide evidence for grand unification or the viability of string theory. The failure to find evidence for MSSM using the Large Hadron Collider has strengthened an inclination to abandon it.

In particle physics, majorons are a hypothetical type of Goldstone boson that are conjectured to mediate the neutrino mass violation of lepton number or BL in certain high energy collisions such as

<span class="mw-page-title-main">Hierarchy problem</span> Unsolved problem in physics

In theoretical physics, the hierarchy problem is the problem concerning the large discrepancy between aspects of the weak force and gravity. There is no scientific consensus on why, for example, the weak force is 1024 times stronger than gravity.

In particle physics, the top quark condensate theory is an alternative to the Standard Model fundamental Higgs field, where the Higgs boson is a composite field, composed of the top quark and its antiquark. The top quark-antiquark pairs are bound together by a new force called topcolor, analogous to the binding of Cooper pairs in a BCS superconductor, or mesons in the strong interactions. The top quark is very heavy, with a measured mass of approximately 174 GeV, and so its Yukawa coupling is of order unity, suggesting the possibility of strong coupling dynamics at high energy scales. This model attempts to explain how the electroweak scale may match the top quark mass.

Pran Nath is a theoretical physicist working at Northeastern University, with research focus in elementary particle physics. He holds a Matthews Distinguished University Professor chair.

Savas Dimopoulos is a particle physicist at Stanford University. He worked at CERN from 1994 to 1997. Dimopoulos is well known for his work on constructing theories beyond the Standard Model.

<span class="mw-page-title-main">John Ellis (physicist, born 1946)</span> British physicist

Jonathan Richard Ellis is a British theoretical physicist who is currently Clerk Maxwell Professor of Theoretical Physics at King's College London.

<span class="mw-page-title-main">Physics beyond the Standard Model</span> Theories trying to extend known physics

Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neutrino oscillations, matter–antimatter asymmetry, and the nature of dark matter and dark energy. Another problem lies within the mathematical framework of the Standard Model itself: the Standard Model is inconsistent with that of general relativity, and one or both theories break down under certain conditions, such as spacetime singularities like the Big Bang and black hole event horizons.

<span class="mw-page-title-main">Christopher T. Hill</span> American theoretical physicist

Christopher T. Hill is an American theoretical physicist at the Fermi National Accelerator Laboratory who did undergraduate work in physics at M.I.T., and graduate work at Caltech. Hill's Ph.D. thesis, "Higgs Scalars and the Nonleptonic Weak Interactions" (1977) contains one of the first detailed discussions of the two-Higgs-doublet model and its impact upon weak interactions.

Topcolor is a model in theoretical physics, of dynamical electroweak symmetry breaking in which the top quark and anti-top quark form a composite Higgs boson by a new force arising from massive "top gluons". The solution to composite Higgs models was actually anticipated in 1981, and found to be the Infrared fixed point for the top quark mass.

In particle physics and string theory (M-theory), the ADD model, also known as the model with large extra dimensions (LED), is a model framework that attempts to solve the hierarchy problem. The model tries to explain this problem by postulating that our universe, with its four dimensions, exists on a membrane in a higher dimensional space. It is then suggested that the other forces of nature operate within this membrane and its four dimensions, while the hypotethical gravity-bearing particle graviton can propagate across the extra dimensions. This would explain why gravity is very weak compared to the other fundamental forces. The size of the dimensions in ADD is around the order of the TeV scale, which results in it being experimentally probeable by current colliders, unlike many exotic extra dimensional hypotheses that have the relevant size around the Planck scale.

In particle physics, W′ and Z′ bosons refer to hypothetical gauge bosons that arise from extensions of the electroweak symmetry of the Standard Model. They are named in analogy with the Standard Model W and Z bosons.

<span class="mw-page-title-main">Gian Francesco Giudice</span> Italian theoretical physicist

Gian Francesco Giudice is an Italian theoretical physicist working at CERN in particle physics and cosmology.

<span class="mw-page-title-main">Riccardo Barbieri</span>

Riccardo Barbieri is an Italian theoretical physicist and a professor at the Scuola Normale Superiore di Pisa. He has written more than two hundred research papers in the field of theoretical elementary particle physics, and has been particularly influential in physics beyond the Standard Model.

Michael Dine is an American theoretical physicist, specializing in elementary particle physics, supersymmetry, string theory, and physics beyond the Standard Model.

Vernon Duane Barger is an American theoretical physicist, specializing in elementary particle physics.

References

  1. Kane, G.L.; Leveille, J.P. (1982). "Experimental constraints on gluino masses and supersymmetric theories". Physics Letters B. Elsevier BV. 112 (3): 227–232. Bibcode:1982PhLB..112..227K. doi:10.1016/0370-2693(82)90968-6. hdl: 2027.42/23982 . ISSN   0370-2693.
  2. Haber, H; Kane, G. L. (1985). "The search for supersymmetry: Probing physics beyond the standard model". Physics Reports. Elsevier BV. 117 (2–4): 75–263. Bibcode:1985PhR...117...75H. doi:10.1016/0370-1573(85)90051-1. hdl: 2027.42/25825 . ISSN   0370-1573.
  3. Chung, D; Everett, L; Kane, G; King, S; Lykken, J; Wang, L (2005). "The soft supersymmetry-breaking Lagrangian: theory and applications". Physics Reports. 407 (1–3): 1–203. arXiv: hep-ph/0312378 . Bibcode:2005PhR...407....1C. doi:10.1016/j.physrep.2004.08.032. ISSN   0370-1573. S2CID   119344585.
  4. Kane, G. L.; Kolda, Chris; Wells, James D. (1993-05-03). "Calculable upper limit on the mass of the lightest Higgs boson in perturbatively valid supersymmetric theories with arbitrary Higgs sectors". Physical Review Letters. 70 (18): 2686–2689. arXiv: hep-ph/9210242 . Bibcode:1993PhRvL..70.2686K. doi:10.1103/physrevlett.70.2686. ISSN   0031-9007. PMID   10053627. S2CID   15416281.
  5. For a complete list of early work, see Publications linked above
  6. Kane, G. L.; Kolda, Chris; Roszkowski, Leszek; Wells, James D. (1994-06-01). "Study of constrained minimal supersymmetry". Physical Review D. 49 (11): 6173–6210. arXiv: hep-ph/9312272 . Bibcode:1994PhRvD..49.6173K. doi:10.1103/physrevd.49.6173. ISSN   0556-2821. PMID   10016942. S2CID   46531720.
  7. Arkani-Hamed, Nima; Kane, Gordon L; Thaler, Jesse; Wang, Lian-Tao (2006-08-29). "Supersymmetry and the LHC inverse problem". Journal of High Energy Physics. 2006 (8): 070. arXiv: hep-ph/0512190 . Bibcode:2006JHEP...08..070A. doi:10.1088/1126-6708/2006/08/070. ISSN   1029-8479. S2CID   12990534.
  8. Acharya, Bobby S.; Bobkov, Konstantin; Kane, Gordon L.; Kumar, Piyush; Shao, Jing (2007-12-12). "Explaining the electroweak scale and stabilizing moduli inMtheory". Physical Review D. 76 (12): 126010. arXiv: hep-th/0701034 . Bibcode:2007PhRvD..76l6010A. doi:10.1103/physrevd.76.126010. ISSN   1550-7998. S2CID   4834837.
  9. Kane, Gordon; Lu, Ran; Watson, Scott (2009). "PAMELA satellite data as a signal of non-thermal wino LSP dark matter". Physics Letters B. 681 (2): 151–160. arXiv: 0906.4765 . Bibcode:2009PhLB..681..151K. doi:10.1016/j.physletb.2009.09.053. ISSN   0370-2693. S2CID   36126528.
  10. Grajek, Phill; Kane, Gordon L.; Phalen, Daniel J.; Pierce, Aaron; Watson, Scott (2009-02-05). "Is the PAMELA positron excess winos?". Physical Review D. 79 (4): 043506. arXiv: 0812.4555 . Bibcode:2009PhRvD..79d3506G. doi:10.1103/physrevd.79.043506. ISSN   1550-7998. S2CID   33688144.
  11. Feldman, Daniel; Kane, Gordon; Lu, Ran; Nelson, Brent D. (2010). "Dark matter as a guide toward a light gluino at the LHC". Physics Letters B. 687 (4–5): 363–370. arXiv: 1002.2430 . Bibcode:2010PhLB..687..363F. doi:10.1016/j.physletb.2010.03.055. ISSN   0370-2693. S2CID   55584466.
  12. "Physics Professor Gordon Kane Awarded 2017 APS J. J. Sakurai Prize for Theoretical Particle Physics". LSA Physics, University of Michigan. 28 September 2016.
  13. von Baeyer, Hans Christian (November 2000). "Review of Supersymmetry: Squarks, Photinos, and the Unveiling of the Ultimate Laws of Nature by Gordon Kane". American Journal of Physics. 68 (11): 1064. doi:10.1119/1.1290254.