Supergravity

Last updated

In theoretical physics, supergravity (supergravity theory; SUGRA for short) is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as the Minimal Supersymmetric Standard Model. Supergravity is the gauge theory of local supersymmetry. Since the supersymmetry (SUSY) generators form together with the Poincaré algebra a superalgebra, called the super-Poincaré algebra, supersymmetry as a gauge theory makes gravity arise in a natural way. [1]

Contents

Gravitons

Like all covariant approaches to quantum gravity, [2] supergravity contains a spin-2 field whose quantum is the graviton. Supersymmetry requires the graviton field to have a superpartner. This field has spin 3/2 and its quantum is the gravitino. The number of gravitino fields is equal to the number of supersymmetries.

History

Gauge supersymmetry

The first theory of local supersymmetry was proposed by Dick Arnowitt and Pran Nath in 1975 [3] and was called gauge supersymmetry.

Supergravity

The first model of 4-dimensional supergravity (without this denotation) was formulated by Dmitri Vasilievich Volkov and Vyacheslav A. Soroka in 1973, [4] emphasizing the importance of spontaneous supersymmetry breaking for the possibility of a realistic model. The minimal version of 4-dimensional supergravity (with unbroken local supersymmetry) was constructed in detail in 1976 by Dan Freedman, Sergio Ferrara and Peter van Nieuwenhuizen. [5] In 2019 the three were awarded a special Breakthrough Prize in Fundamental Physics for the discovery. [6] The key issue of whether or not the spin 3/2 field is consistently coupled was resolved in the nearly simultaneous paper, by Deser and Zumino, [7] which independently proposed the minimal 4-dimensional model. It was quickly generalized to many different theories in various numbers of dimensions and involving additional (N) supersymmetries. Supergravity theories with N>1 are usually referred to as extended supergravity (SUEGRA). Some supergravity theories were shown to be related to certain higher-dimensional supergravity theories via dimensional reduction (e.g. N=1, 11-dimensional supergravity is dimensionally reduced on T7 to 4-dimensional, ungauged, N = 8 supergravity). The resulting theories were sometimes referred to as Kaluza–Klein theories as Kaluza and Klein constructed in 1919 a 5-dimensional gravitational theory, that when dimensionally reduced on a circle, its 4-dimensional non-massive modes describe electromagnetism coupled to gravity.

mSUGRA

mSUGRA means minimal SUper GRAvity. The construction of a realistic model of particle interactions within the N = 1 supergravity framework where supersymmetry (SUSY) breaks by a super Higgs mechanism carried out by Ali Chamseddine, Richard Arnowitt and Pran Nath in 1982. Collectively now known as minimal supergravity Grand Unification Theories (mSUGRA GUT), gravity mediates the breaking of SUSY through the existence of a hidden sector. mSUGRA naturally generates the Soft SUSY breaking terms which are a consequence of the Super Higgs effect. Radiative breaking of electroweak symmetry through Renormalization Group Equations (RGEs) follows as an immediate consequence. Due to its predictive power, requiring only four input parameters and a sign to determine the low energy phenomenology from the scale of Grand Unification, its interest is a widely investigated model of particle physics

11D: the maximal SUGRA

One of these supergravities, the 11-dimensional theory, generated considerable excitement as the first potential candidate for the theory of everything. This excitement was built on four pillars, two of which have now been largely discredited:

Finally, the first two results each appeared to establish 11 dimensions, the third result appeared to specify the theory, and the last result explained why the observed universe appears to be four-dimensional.

Many of the details of the theory were fleshed out by Peter van Nieuwenhuizen, Sergio Ferrara and Daniel Z. Freedman.

The end of the SUGRA era

The initial excitement over 11-dimensional supergravity soon waned, as various failings were discovered, and attempts to repair the model failed as well. Problems included:[ citation needed ]

Some of these difficulties could be avoided by moving to a 10-dimensional theory involving superstrings. However, by moving to 10 dimensions one loses the sense of uniqueness of the 11-dimensional theory. [12]

The core breakthrough for the 10-dimensional theory, known as the first superstring revolution, was a demonstration by Michael B. Green, John H. Schwarz and David Gross that there are only three supergravity models in 10 dimensions which have gauge symmetries and in which all of the gauge and gravitational anomalies cancel. These were theories built on the groups SO(32) and , the direct product of two copies of E8. Today we know that, using D-branes for example, gauge symmetries can be introduced in other 10-dimensional theories as well. [13]

The second superstring revolution

Initial excitement about the 10-dimensional theories, and the string theories that provide their quantum completion, died by the end of the 1980s. There were too many Calabi–Yaus to compactify on, many more than Yau had estimated, as he admitted in December 2005 at the 23rd International Solvay Conference in Physics. None quite gave the standard model, but it seemed as though one could get close with enough effort in many distinct ways. Plus no one understood the theory beyond the regime of applicability of string perturbation theory.

There was a comparatively quiet period at the beginning of the 1990s; however, several important tools were developed. For example, it became apparent that the various superstring theories were related by "string dualities", some of which relate weak string-coupling - perturbative - physics in one model with strong string-coupling - non-perturbative - in another.

Then the second superstring revolution occurred. Joseph Polchinski realized that obscure string theory objects, called D-branes, which he discovered six years earlier, equate to stringy versions of the p-branes known in supergravity theories. String theory perturbation didn't restrict these p-branes. Thanks to supersymmetry, p-branes in supergravity gained understanding well beyond the limits of string theory.

Armed with this new nonperturbative tool, Edward Witten and many others could show all of the perturbative string theories as descriptions of different states in a single theory that Witten named M-theory. Furthermore, he argued that M-theory's long wavelength limit, i.e. when the quantum wavelength associated to objects in the theory appear much larger than the size of the 11th dimension, needs 11-dimensional supergravity descriptors that fell out of favor with the first superstring revolution 10 years earlier, accompanied by the 2- and 5-branes.

Therefore, supergravity comes full circle and uses a common framework in understanding features of string theories, M-theory, and their compactifications to lower spacetime dimensions.

Relation to superstrings

The term "low energy limits" labels some 10-dimensional supergravity theories. These arise as the massless, tree-level approximation of string theories. True effective field theories of string theories, rather than truncations, are rarely available. Due to string dualities, the conjectured 11-dimensional M-theory is required to have 11-dimensional supergravity as a "low energy limit". However, this doesn't necessarily mean that string theory/M-theory is the only possible UV completion of supergravity;[ citation needed ] supergravity research is useful independent of those relations.

4D N = 1 SUGRA

Before we move on to SUGRA proper, let's recapitulate some important details about general relativity. We have a 4D differentiable manifold M with a Spin(3,1) principal bundle over it. This principal bundle represents the local Lorentz symmetry. In addition, we have a vector bundle T over the manifold with the fiber having four real dimensions and transforming as a vector under Spin(3,1). We have an invertible linear map from the tangent bundle TM[ which? ] to T. This map is the vierbein. The local Lorentz symmetry has a gauge connection associated with it, the spin connection.

The following discussion will be in superspace notation, as opposed to the component notation, which isn't manifestly covariant under SUSY. There are actually many different versions of SUGRA out there which are inequivalent in the sense that their actions and constraints upon the torsion tensor are different, but ultimately equivalent in that we can always perform a field redefinition of the supervierbeins and spin connection to get from one version to another.

In 4D N=1 SUGRA, we have a 4|4 real differentiable supermanifold M, i.e. we have 4 real bosonic dimensions and 4 real fermionic dimensions. As in the nonsupersymmetric case, we have a Spin(3,1) principal bundle over M. We have an R4|4 vector bundle T over M. The fiber of T transforms under the local Lorentz group as follows; the four real bosonic dimensions transform as a vector and the four real fermionic dimensions transform as a Majorana spinor. This Majorana spinor can be reexpressed as a complex left-handed Weyl spinor and its complex conjugate right-handed Weyl spinor (they're not independent of each other). We also have a spin connection as before.

We will use the following conventions; the spatial (both bosonic and fermionic) indices will be indicated by M, N, ... . The bosonic spatial indices will be indicated by μ, ν, ..., the left-handed Weyl spatial indices by α, β,..., and the right-handed Weyl spatial indices by , , ... . The indices for the fiber of T will follow a similar notation, except that they will be hatted like this: . See van der Waerden notation for more details. . The supervierbein is denoted by , and the spin connection by . The inverse supervierbein is denoted by .

The supervierbein and spin connection are real in the sense that they satisfy the reality conditions

where , , and and .

The covariant derivative is defined as

.

The covariant exterior derivative as defined over supermanifolds needs to be super graded. This means that every time we interchange two fermionic indices, we pick up a +1 sign factor, instead of -1.

The presence or absence of R symmetries is optional, but if R-symmetry exists, the integrand over the full superspace has to have an R-charge of 0 and the integrand over chiral superspace has to have an R-charge of 2.

A chiral superfield X is a superfield which satisfies . In order for this constraint to be consistent, we require the integrability conditions that for some coefficients c.

Unlike nonSUSY GR, the torsion has to be nonzero, at least with respect to the fermionic directions. Already, even in flat superspace, . In one version of SUGRA (but certainly not the only one), we have the following constraints upon the torsion tensor:

Here, is a shorthand notation to mean the index runs over either the left or right Weyl spinors.

The superdeterminant of the supervierbein, , gives us the volume factor for M. Equivalently, we have the volume 4|4-superform.

If we complexify the superdiffeomorphisms, there is a gauge where , and . The resulting chiral superspace has the coordinates x and Θ.

R is a scalar valued chiral superfield derivable from the supervielbeins and spin connection. If f is any superfield, is always a chiral superfield.

The action for a SUGRA theory with chiral superfields X, is given by

where K is the Kähler potential and W is the superpotential, and is the chiral volume factor.

Unlike the case for flat superspace, adding a constant to either the Kähler or superpotential is now physical. A constant shift to the Kähler potential changes the effective Planck constant, while a constant shift to the superpotential changes the effective cosmological constant. As the effective Planck constant now depends upon the value of the chiral superfield X, we need to rescale the supervierbeins (a field redefinition) to get a constant Planck constant. This is called the Einstein frame.

N = 8 supergravity in 4 dimensions

N = 8 supergravity is the most symmetric quantum field theory which involves gravity and a finite number of fields. It can be found from a dimensional reduction of 11D supergravity by making the size of 7 of the dimensions go to zero. It has 8 supersymmetries which is the most any gravitational theory can have since there are 8 half-steps between spin 2 and spin −2. (A graviton has the highest spin in this theory which is a spin 2 particle.) More supersymmetries would mean the particles would have superpartners with spins higher than 2. The only theories with spins higher than 2 which are consistent involve an infinite number of particles (such as string theory and higher-spin theories). Stephen Hawking in his A Brief History of Time speculated that this theory could be the Theory of Everything. However, in later years this was abandoned in favour of string theory. There has been renewed interest in the 21st century with the possibility that this theory may be finite.

Higher-dimensional SUGRA

Higher-dimensional SUGRA is the higher-dimensional, supersymmetric generalization of general relativity. Supergravity can be formulated in any number of dimensions up to eleven. Higher-dimensional SUGRA focuses upon supergravity in greater than four dimensions.

The number of supercharges in a spinor depends on the dimension and the signature of spacetime. The supercharges occur in spinors. Thus the limit on the number of supercharges cannot be satisfied in a spacetime of arbitrary dimension. Some theoretical examples in which this is satisfied are:

The supergravity theories that have attracted the most interest contain no spins higher than two. This means, in particular, that they do not contain any fields that transform as symmetric tensors of rank higher than two under Lorentz transformations. The consistency of interacting higher spin field theories is, however, presently a field of very active interest.

See also

Related Research Articles

In theoretical physics, twistor theory was proposed by Roger Penrose in 1967 as a possible path to quantum gravity and has evolved into a widely studied branch of theoretical and mathematical physics. Penrose's idea was that twistor space should be the basic arena for physics from which space-time itself should emerge. It has led to powerful mathematical tools that have applications to differential and integral geometry, nonlinear differential equations and representation theory, and in physics to general relativity, quantum field theory, and the theory of scattering amplitudes. Twistor theory arose in the context of the rapidly expanding mathematical developments in Einstein's theory of general relativity in the late 1950s and in the 1960s and carries a number of influences from that period. In particular, Roger Penrose has credited Ivor Robinson as an important early influence in the development of twistor theory, through his construction of so-called Robinson congruences.

In theoretical physics, a chiral anomaly is the anomalous nonconservation of a chiral current. In everyday terms, it is equivalent to a sealed box that contained equal numbers of left and right-handed bolts, but when opened was found to have more left than right, or vice versa.

In gauge theory and mathematical physics, a topological quantum field theory is a quantum field theory which computes topological invariants.

In theoretical physics, type II string theory is a unified term that includes both type IIA strings and type IIB strings theories. Type II string theory accounts for two of the five consistent superstring theories in ten dimensions. Both theories have extended supersymmetry which is maximal amount of supersymmetry — namely 32 supercharges — in ten dimensions. Both theories are based on oriented closed strings. On the worldsheet, they differ only in the choice of GSO projection.

In theoretical physics, a supermultiplet is a representation of a supersymmetry algebra, possibly with extended supersymmetry.

In quantum field theory, the term moduli is sometimes used to refer to scalar fields whose potential energy function has continuous families of global minima. Such potential functions frequently occur in supersymmetric systems. The term "modulus" is borrowed from mathematics, where it is used synonymously with "parameter". The word moduli first appeared in 1857 in Bernhard Riemann's celebrated paper "Theorie der Abel'schen Functionen".

In theoretical physics, a super-Poincaré algebra is an extension of the Poincaré algebra to incorporate supersymmetry, a relation between bosons and fermions. They are examples of supersymmetry algebras, and are Lie superalgebras. Thus a super-Poincaré algebra is a Z2-graded vector space with a graded Lie bracket such that the even part is a Lie algebra containing the Poincaré algebra, and the odd part is built from spinors on which there is an anticommutation relation with values in the even part.

In quantum field theory, Seiberg duality, conjectured by Nathan Seiberg in 1994, is an S-duality relating two different supersymmetric QCDs. The two theories are not identical, but they agree at low energies. More precisely under a renormalization group flow they flow to the same IR fixed point, and so are in the same universality class. It is an extension to nonabelian gauge theories with N=1 supersymmetry of Montonen–Olive duality in N=4 theories and electromagnetic duality in abelian theories.

In theoretical physics, there are many theories with supersymmetry (SUSY) which also have internal gauge symmetries. Supersymmetric gauge theory generalizes this notion.

In theoretical physics, the Wess–Zumino model has become the first known example of an interacting four-dimensional quantum field theory with linearly realised supersymmetry. In 1974, Julius Wess and Bruno Zumino studied, using modern terminology, dynamics of a single chiral superfield whose cubic superpotential leads to a renormalizable theory.

In theoretical physics, the superconformal algebra is a graded Lie algebra or superalgebra that combines the conformal algebra and supersymmetry. In two dimensions, the superconformal algebra is infinite-dimensional. In higher dimensions, superconformal algebras are finite-dimensional and generate the superconformal group.

In theoretical physics, Seiberg–Witten theory is an supersymmetric gauge theory with an exact low-energy effective action, of which the kinetic part coincides with the Kähler potential of the moduli space of vacua. Before taking the low-energy effective action, the theory is known as supersymmetric Yang–Mills theory, as the field content is a single vector supermultiplet, analogous to the field content of Yang–Mills theory being a single vector gauge field or connection.

In theoretical physics, the Haag–Łopuszański–Sohnius theorem states that if both commutating and anticommutating generators are considered, then the only way to nontrivially mix spacetime and internal symmetries is through supersymmetry. The anticommutating generators must be spin-1/2 spinors which can additionally admit their own internal symmetry known as R-symmetry. The theorem is a generalization of the Coleman–Mandula theorem to Lie superalgebras. It was proved in 1975 by Rudolf Haag, Jan Łopuszański, and Martin Sohnius as a response to the development of the first supersymmetric field theories by Julius Wess and Bruno Zumino in 1974.

In quantum field theory, gaugino condensation is the nonzero vacuum expectation value in some models of a bilinear expression constructed in theories with supersymmetry from the superpartner of a gauge boson called the gaugino. The gaugino and the bosonic gauge field and the D-term are all components of a supersymmetric vector superfield in the Wess–Zumino gauge.

Higher-dimensional supergravity is the supersymmetric generalization of general relativity in higher dimensions. Supergravity can be formulated in any number of dimensions up to eleven. This article focuses upon supergravity (SUGRA) in greater than four dimensions.

In mathematical physics, higher-dimensional gamma matrices generalize to arbitrary dimension the four-dimensional Gamma matrices of Dirac, which are a mainstay of relativistic quantum mechanics. They are utilized in relativistically invariant wave equations for fermions in arbitrary space-time dimensions, notably in string theory and supergravity. The Weyl–Brauer matrices provide an explicit construction of higher-dimensional gamma matrices for Weyl spinors. Gamma matrices also appear in generic settings in Riemannian geometry, particularly when a spin structure can be defined.

This page is a glossary of terms in string theory, including related areas such as supergravity, supersymmetry, and high energy physics.

N = 4 supersymmetric Yang–Mills (SYM) theory is a relativistic conformally invariant Lagrangian gauge theory describing fermions interacting via gauge field exchanges. In D=4 spacetime dimensions, N=4 is the maximal number of supersymmetries or supersymmetry charges.

In string theory, the Ramond–Neveu–Schwarz (RNS) formalism is an approach to formulating superstrings in which the worldsheet has explicit superconformal invariance but spacetime supersymmetry is hidden, in contrast to the Green–Schwarz formalism where the latter is explicit. It was originally developed by Pierre Ramond, André Neveu and John Schwarz in the RNS model in 1971, which gives rise to type II string theories and can also give type I string theory. Heterotic string theories can also be acquired through this formalism by using a different worldsheet action. There are various ways to quantize the string within this framework including light-cone quantization, old canonical quantization, and BRST quantization. A consistent string theory is only acquired if the spectrum of states is restricted through a procedure known as a GSO projection, with this projection being automatically incorporated in the Green–Schwarz formalism.

In theoretical physics, more specifically in quantum field theory and supersymmetry, supersymmetric Yang–Mills, also known as super Yang–Mills and abbreviated to SYM, is a supersymmetric generalization of Yang–Mills theory, which is a gauge theory that plays an important part in the mathematical formulation of forces in particle physics.

References

  1. Van Nieuwenhuizen, P. (1981). "Supergravity". Physics Reports. 68 (4): 189–398. Bibcode:1981PhR....68..189V. doi:10.1016/0370-1573(81)90157-5.
  2. Rovelli, Carlo (2000). "Notes for a brief history of quantum gravity". arXiv: gr-qc/0006061 .
  3. Nath, P.; Arnowitt, R. (1975). "Generalized Super-Gauge Symmetry as a New Framework for Unified Gauge Theories". Physics Letters B. 56 (2): 177. Bibcode:1975PhLB...56..177N. doi:10.1016/0370-2693(75)90297-x.
  4. Volkov, D.V.; Soroka, V.A. (1973). "Higgs effect for Goldstone particles with spin 1/2". JETP Letters. 16 (11): 438–440. Bibcode:1973JETPL..18..312V. doi:10.1007/BFb0105271.
  5. Freedman, D.Z.; van Nieuwenhuizen, P.; Ferrara, S. (1976). "Progress Toward A Theory Of Supergravity". Physical Review D. 13 (12): 3214–3218. Bibcode:1976PhRvD..13.3214F. doi:10.1103/physrevd.13.3214.
  6. "Supergravity scientists share $3M US Breakthrough Prize". CBC News.
  7. Deser, S.; Zumino, B. (1976). "Consistent Supergravity". Physics Letters B. 62 (3): 335–337. Bibcode:1976PhLB...62..335D. doi:10.1016/0370-2693(76)90089-7.
  8. Nahm, Werner (1978). "Supersymmetries and their representations". Nuclear Physics B. 135 (1): 149–166. Bibcode:1978NuPhB.135..149N. doi:10.1016/0550-3213(78)90218-3.
  9. Witten, Ed (1981). "Search for a realistic Kaluza-Klein theory". Nuclear Physics B. 186 (3): 412–428. Bibcode:1981NuPhB.186..412W. doi:10.1016/0550-3213(81)90021-3.
  10. E. Cremmer, B. Julia and J. Scherk, "Supergravity theory in eleven dimensions", Physics LettersB76 (1978) pp 409-412,
  11. Peter G.O. Freund; Mark A. Rubin (1980). "Dynamics of dimensional reduction". Physics Letters B. 97 (2): 233–235. Bibcode:1980PhLB...97..233F. doi:10.1016/0370-2693(80)90590-0.
  12. Duff, M. J. (1998). "A Layman's Guide to M-theory". arXiv: hep-th/9805177 .
  13. Blumenhagen, R.; Cvetic, M.; Langacker, P.; Shiu, G. (2005). "Toward Realistic Intersecting D-Brane Models". Annual Review of Nuclear and Particle Science . 55 (1): 71–139. arXiv: hep-th/0502005 . Bibcode:2005ARNPS..55...71B. doi: 10.1146/annurev.nucl.55.090704.151541 . S2CID   15148429.

Biblography

Historical

General

Further reading