This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(June 2020) |
In the field of mathematics known as differential geometry, a generalized complex structure is a property of a differential manifold that includes as special cases a complex structure and a symplectic structure. Generalized complex structures were introduced by Nigel Hitchin in 2002 and further developed by his students Marco Gualtieri and Gil Cavalcanti.
These structures first arose in Hitchin's program of characterizing geometrical structures via functionals of differential forms, a connection which formed the basis of Robbert Dijkgraaf, Sergei Gukov, Andrew Neitzke and Cumrun Vafa's 2004 proposal that topological string theories are special cases of a topological M-theory. Today generalized complex structures also play a leading role in physical string theory, as supersymmetric flux compactifications, which relate 10-dimensional physics to 4-dimensional worlds like ours, require (possibly twisted) generalized complex structures.
Consider an N-manifold M. The tangent bundle of M, which will be denoted T, is the vector bundle over M whose fibers consist of all tangent vectors to M. A section of T is a vector field on M. The cotangent bundle of M, denoted T*, is the vector bundle over M whose sections are one-forms on M.
In complex geometry one considers structures on the tangent bundles of manifolds. In symplectic geometry one is instead interested in exterior powers of the cotangent bundle. Generalized geometry unites these two fields by treating sections of the generalized tangent bundle, which is the direct sum of the tangent and cotangent bundles, which are formal sums of a vector field and a one-form.
The fibers are endowed with a natural inner product with signature (N, N). If X and Y are vector fields and ξ and η are one-forms then the inner product of X+ξ and Y+η is defined as
A generalized almost complex structure is just an almost complex structure of the generalized tangent bundle which preserves the natural inner product:
such that and
Like in the case of an ordinary almost complex structure, a generalized almost complex structure is uniquely determined by its -eigenbundle, i.e. a subbundle of the complexified generalized tangent bundle given by
Such subbundle L satisfies the following properties:
Vice versa, any subbundle L satisfying (i), (ii) is the -eigenbundle of a unique generalized almost complex structure, so that the properties (i), (ii) can be considered as an alternative definition of generalized almost complex structure.
In ordinary complex geometry, an almost complex structure is integrable to a complex structure if and only if the Lie bracket of two sections of the holomorphic subbundle is another section of the holomorphic subbundle.
In generalized complex geometry one is not interested in vector fields, but rather in the formal sums of vector fields and one-forms. A kind of Lie bracket for such formal sums was introduced in 1990 and is called the Courant bracket which is defined by
where is the Lie derivative along the vector field X, d is the exterior derivative and i is the interior product.
A generalized complex structure is a generalized almost complex structure such that the space of smooth sections of L is closed under the Courant bracket.
There is a one-to-one correspondence between maximal isotropic subbundle of and pairs where E is a subbundle of T and is a 2-form. This correspondence extends straightforwardly to the complex case.
Given a pair one can construct a maximally isotropic subbundle of as follows. The elements of the subbundle are the formal sums where the vector field X is a section of E and the one-form ξ restricted to the dual space is equal to the one-form
To see that is isotropic, notice that if Y is a section of E and restricted to is then as the part of orthogonal to annihilates Y. Thesefore if and are sections of then
and so is isotropic. Furthermore, is maximal because there are (complex) dimensions of choices for and is unrestricted on the complement of which is of (complex) dimension Thus the total (complex) dimension in n. Gualtieri has proven that all maximal isotropic subbundles are of the form for some and
The type of a maximal isotropic subbundle is the real dimension of the subbundle that annihilates E. Equivalently it is 2N minus the real dimension of the projection of onto the tangent bundle T. In other words, the type of a maximal isotropic subbundle is the codimension of its projection onto the tangent bundle. In the complex case one uses the complex dimension and the type is sometimes referred to as the complex type. While the type of a subbundle can in principle be any integer between 0 and 2N, generalized almost complex structures cannot have a type greater than N because the sum of the subbundle and its complex conjugate must be all of
The type of a maximal isotropic subbundle is invariant under diffeomorphisms and also under shifts of the B-field, which are isometries of of the form
where B is an arbitrary closed 2-form called the B-field in the string theory literature.
The type of a generalized almost complex structure is in general not constant, it can jump by any even integer. However it is upper semi-continuous, which means that each point has an open neighborhood in which the type does not increase. In practice this means that subsets of greater type than the ambient type occur on submanifolds with positive codimension.
The real index r of a maximal isotropic subspace L is the complex dimension of the intersection of L with its complex conjugate. A maximal isotropic subspace of is a generalized almost complex structure if and only if r = 0.
As in the case of ordinary complex geometry, there is a correspondence between generalized almost complex structures and complex line bundles. The complex line bundle corresponding to a particular generalized almost complex structure is often referred to as the canonical bundle, as it generalizes the canonical bundle in the ordinary case. It is sometimes also called the pure spinor bundle, as its sections are pure spinors.
The canonical bundle is a one complex dimensional subbundle of the bundle of complex differential forms on M. Recall that the gamma matrices define an isomorphism between differential forms and spinors. In particular even and odd forms map to the two chiralities of Weyl spinors. Vectors have an action on differential forms given by the interior product. One-forms have an action on forms given by the wedge product. Thus sections of the bundle act on differential forms. This action is a representation of the action of the Clifford algebra on spinors.
A spinor is said to be a pure spinor if it is annihilated by half of a set of a set of generators of the Clifford algebra. Spinors are sections of our bundle and generators of the Clifford algebra are the fibers of our other bundle Therefore, a given pure spinor is annihilated by a half-dimensional subbundle E of Such subbundles are always isotropic, so to define an almost complex structure one must only impose that the sum of E and its complex conjugate is all of This is true whenever the wedge product of the pure spinor and its complex conjugate contains a top-dimensional component. Such pure spinors determine generalized almost complex structures.
Given a generalized almost complex structure, one can also determine a pure spinor up to multiplication by an arbitrary complex function. These choices of pure spinors are defined to be the sections of the canonical bundle.
If a pure spinor that determines a particular complex structure is closed, or more generally if its exterior derivative is equal to the action of a gamma matrix on itself, then the almost complex structure is integrable and so such pure spinors correspond to generalized complex structures.
If one further imposes that the canonical bundle is holomorphically trivial, meaning that it is global sections which are closed forms, then it defines a generalized Calabi-Yau structure and M is said to be a generalized Calabi-Yau manifold.
Locally all pure spinors can be written in the same form, depending on an integer k, the B-field 2-form B, a nondegenerate symplectic form ω and a k-form Ω. In a local neighborhood of any point a pure spinor Φ which generates the canonical bundle may always be put in the form
where Ω is decomposable as the wedge product of one-forms.
Define the subbundle E of the complexified tangent bundle to be the projection of the holomorphic subbundle L of to In the definition of a generalized almost complex structure we have imposed that the intersection of L and its conjugate contains only the origin, otherwise they would be unable to span the entirety of However the intersection of their projections need not be trivial. In general this intersection is of the form
for some subbundle Δ. A point which has an open neighborhood in which the dimension of the fibers of Δ is constant is said to be a regular point.
Every regular point in a generalized complex manifold has an open neighborhood which, after a diffeomorphism and shift of the B-field, has the same generalized complex structure as the Cartesian product of the complex vector space and the standard symplectic space with the standard symplectic form, which is the direct sum of the two by two off-diagonal matrices with entries 1 and −1.
Near non-regular points, the above classification theorem does not apply. However, about any point, a generalized complex manifold is, up to diffeomorphism and B-field, a product of a symplectic manifold with a generalized complex manifold which is of complex type at the point, much like Weinstein's theorem for the local structure of Poisson manifolds. The remaining question of the local structure is: what does a generalized complex structure look like near a point of complex type? In fact, it will be induced by a holomorphic Poisson structure.
The space of complex differential forms has a complex conjugation operation given by complex conjugation in This allows one to define holomorphic and antiholomorphic one-forms and (m, n)-forms, which are homogeneous polynomials in these one-forms with m holomorphic factors and n antiholomorphic factors. In particular, all (n, 0)-forms are related locally by multiplication by a complex function and so they form a complex line bundle.
(n, 0)-forms are pure spinors, as they are annihilated by antiholomorphic tangent vectors and by holomorphic one-forms. Thus this line bundle can be used as a canonical bundle to define a generalized complex structure. Restricting the annihilator from to the complexified tangent bundle one gets the subspace of antiholomorphic vector fields. Therefore, this generalized complex structure on defines an ordinary complex structure on the tangent bundle.
As only half of a basis of vector fields are holomorphic, these complex structures are of type N. In fact complex manifolds, and the manifolds obtained by multiplying the pure spinor bundle defining a complex manifold by a complex, -closed (2,0)-form, are the only type N generalized complex manifolds.
The pure spinor bundle generated by
for a nondegenerate two-form ω defines a symplectic structure on the tangent space. Thus symplectic manifolds are also generalized complex manifolds.
The above pure spinor is globally defined, and so the canonical bundle is trivial. This means that symplectic manifolds are not only generalized complex manifolds but in fact are generalized Calabi-Yau manifolds.
The pure spinor is related to a pure spinor which is just a number by an imaginary shift of the B-field, which is a shift of the Kähler form. Therefore, these generalized complex structures are of the same type as those corresponding to a scalar pure spinor. A scalar is annihilated by the entire tangent space, and so these structures are of type 0.
Up to a shift of the B-field, which corresponds to multiplying the pure spinor by the exponential of a closed, real 2-form, symplectic manifolds are the only type 0 generalized complex manifolds. Manifolds which are symplectic up to a shift of the B-field are sometimes called B-symplectic.
Some of the almost structures in generalized complex geometry may be rephrased in the language of G-structures. The word "almost" is removed if the structure is integrable.
The bundle with the above inner product is an O(2n, 2n) structure. A generalized almost complex structure is a reduction of this structure to a U(n, n) structure. Therefore, the space of generalized complex structures is the coset
A generalized almost Kähler structure is a pair of commuting generalized complex structures such that minus the product of the corresponding tensors is a positive definite metric on Generalized Kähler structures are reductions of the structure group to Generalized Kähler manifolds, and their twisted counterparts, are equivalent to the bihermitian manifolds discovered by Sylvester James Gates, Chris Hull and Martin Roček in the context of 2-dimensional supersymmetric quantum field theories in 1984.
Finally, a generalized almost Calabi-Yau metric structure is a further reduction of the structure group to
Notice that a generalized Calabi metric structure, which was introduced by Marco Gualtieri, is a stronger condition than a generalized Calabi–Yau structure, which was introduced by Nigel Hitchin. In particular a generalized Calabi–Yau metric structure implies the existence of two commuting generalized almost complex structures.
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.
In mathematics, a symplectic vector space is a vector space over a field equipped with a symplectic bilinear form.
In mathematics, a frame bundle is a principal fiber bundle associated with any vector bundle . The fiber of over a point is the set of all ordered bases, or frames, for . The general linear group acts naturally on via a change of basis, giving the frame bundle the structure of a principal -bundle.
In mathematics, and especially differential geometry and gauge theory, a connection on a fiber bundle is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. The most common case is that of a linear connection on a vector bundle, for which the notion of parallel transport must be linear. A linear connection is equivalently specified by a covariant derivative, an operator that differentiates sections of the bundle along tangent directions in the base manifold, in such a way that parallel sections have derivative zero. Linear connections generalize, to arbitrary vector bundles, the Levi-Civita connection on the tangent bundle of a pseudo-Riemannian manifold, which gives a standard way to differentiate vector fields. Nonlinear connections generalize this concept to bundles whose fibers are not necessarily linear.
In mathematics, an almost complex manifold is a smooth manifold equipped with a smooth linear complex structure on each tangent space. Every complex manifold is an almost complex manifold, but there are almost complex manifolds that are not complex manifolds. Almost complex structures have important applications in symplectic geometry.
In differential geometry, the holonomy of a connection on a smooth manifold is the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. Holonomy is a general geometrical consequence of the curvature of the connection. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features.
In mathematics, deformation theory is the study of infinitesimal conditions associated with varying a solution P of a problem to slightly different solutions Pε, where ε is a small number, or a vector of small quantities. The infinitesimal conditions are the result of applying the approach of differential calculus to solving a problem with constraints. The name is an analogy to non-rigid structures that deform slightly to accommodate external forces.
In mathematics, and specifically differential geometry, a connection form is a manner of organizing the data of a connection using the language of moving frames and differential forms.
In physics and mathematics, supermanifolds are generalizations of the manifold concept based on ideas coming from supersymmetry. Several definitions are in use, some of which are described below.
In differential geometry, a G-structure on an n-manifold M, for a given structure group G, is a principal G-subbundle of the tangent frame bundle FM (or GL(M)) of M.
In differential geometry, a field of mathematics, a normal bundle is a particular kind of vector bundle, complementary to the tangent bundle, and coming from an embedding.
In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle of a smooth manifold, it generalizes the classical notion of Euler characteristic. It is named after Leonhard Euler because of this.
In mathematics, a CR manifold, or Cauchy–Riemann manifold, is a differentiable manifold together with a geometric structure modeled on that of a real hypersurface in a complex vector space, or more generally modeled on an edge of a wedge.
In differential geometry, a field of mathematics, the Courant bracket is a generalization of the Lie bracket from an operation on the tangent bundle to an operation on the direct sum of the tangent bundle and the vector bundle of p-forms.
In mathematics, specifically in symplectic topology and algebraic geometry, a quantum cohomology ring is an extension of the ordinary cohomology ring of a closed symplectic manifold. It comes in two versions, called small and big; in general, the latter is more complicated and contains more information than the former. In each, the choice of coefficient ring significantly affects its structure, as well.
In differential geometry, a field of mathematics, a Courant algebroid is a vector bundle together with an inner product and a compatible bracket more general than that of a Lie algebroid.
In mathematics, and especially complex geometry, the holomorphic tangent bundle of a complex manifold is the holomorphic analogue of the tangent bundle of a smooth manifold. The fibre of the holomorphic tangent bundle over a point is the holomorphic tangent space, which is the tangent space of the underlying smooth manifold, given the structure of a complex vector space via the almost complex structure of the complex manifold .
In symplectic geometry, the symplectic frame bundle of a given symplectic manifold is the canonical principal -subbundle of the tangent frame bundle consisting of linear frames which are symplectic with respect to . In other words, an element of the symplectic frame bundle is a linear frame at point i.e. an ordered basis of tangent vectors at of the tangent vector space , satisfying
In mathematics, the Kodaira–Spencer map, introduced by Kunihiko Kodaira and Donald C. Spencer, is a map associated to a deformation of a scheme or complex manifold X, taking a tangent space of a point of the deformation space to the first cohomology group of the sheaf of vector fields on X.
In mathematics, an Abelian 2-group is a higher dimensional analogue of an Abelian group, in the sense of higher algebra, which were originally introduced by Alexander Grothendieck while studying abstract structures surrounding Abelian varieties and Picard groups. More concretely, they are given by groupoids which have a bifunctor which acts formally like the addition an Abelian group. Namely, the bifunctor has a notion of commutativity, associativity, and an identity structure. Although this seems like a rather lofty and abstract structure, there are several examples of Abelian 2-groups. In fact, some of which provide prototypes for more complex examples of higher algebraic structures, such as Abelian n-groups.