Worldsheet

Last updated

In string theory, a worldsheet is a two-dimensional manifold which describes the embedding of a string in spacetime. [1] The term was coined by Leonard Susskind [2] as a direct generalization of the world line concept for a point particle in special and general relativity.

Contents

The type of string, the geometry of the spacetime in which it propagates, and the presence of long-range background fields (such as gauge fields) are encoded in a two-dimensional conformal field theory defined on the worldsheet. For example, the bosonic string in 26 dimensions has a worldsheet conformal field theory consisting of 26 free scalar bosons. Meanwhile, a superstring worldsheet theory in 10 dimensions consists of 10 free scalar fields and their fermionic superpartners.

Mathematical formulation

Bosonic string

We begin with the classical formulation of the bosonic string.

First fix a -dimensional flat spacetime (-dimensional Minkowski space), , which serves as the ambient space for the string.

A world-sheet is then an embedded surface, that is, an embedded 2-manifold , such that the induced metric has signature everywhere. Consequently it is possible to locally define coordinates where is time-like while is space-like.

Strings are further classified into open and closed. The topology of the worldsheet of an open string is , where , a closed interval, and admits a global coordinate chart with and .

Meanwhile the topology of the worldsheet of a closed string [3] is , and admits 'coordinates' with and . That is, is a periodic coordinate with the identification . The redundant description (using quotients) can be removed by choosing a representative .

World-sheet metric

In order to define the Polyakov action, the world-sheet is equipped with a world-sheet metric [4] , which also has signature but is independent of the induced metric.

Since Weyl transformations are considered a redundancy of the metric structure, the world-sheet is instead considered to be equipped with a conformal class of metrics . Then defines the data of a conformal manifold with signature .

Related Research Articles

<span class="mw-page-title-main">Normed vector space</span> Vector space on which a distance is defined

In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers on which a norm is defined. A norm is a generalization of the intuitive notion of "length" in the physical world. If is a vector space over , where is a field equal to or to , then a norm on is a map , typically denoted by , satisfying the following four axioms:

  1. Non-negativity: for every ,.
  2. Positive definiteness: for every , if and only if is the zero vector.
  3. Absolute homogeneity: for every and ,
  4. Triangle inequality: for every and ,

In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space.

<span class="mw-page-title-main">Minkowski space</span> Spacetime used in theory of relativity

In physics, Minkowski space is the main mathematical description of spacetime in the absence of gravitation. It combines inertial space and time manifolds into a four-dimensional model.

<span class="mw-page-title-main">Instanton</span> Solitons in Euclidean spacetime

An instanton is a notion appearing in theoretical and mathematical physics. An instanton is a classical solution to equations of motion with a finite, non-zero action, either in quantum mechanics or in quantum field theory. More precisely, it is a solution to the equations of motion of the classical field theory on a Euclidean spacetime.

Bosonic string theory is the original version of string theory, developed in the late 1960s and named after Satyendra Nath Bose. It is so called because it contains only bosons in the spectrum.

The Nambu–Goto action is the simplest invariant action in bosonic string theory, and is also used in other theories that investigate string-like objects. It is the starting point of the analysis of zero-thickness string behaviour, using the principles of Lagrangian mechanics. Just as the action for a free point particle is proportional to its proper time – i.e., the "length" of its world-line – a relativistic string's action is proportional to the area of the sheet which the string traces as it travels through spacetime.

In physics, the Polyakov action is an action of the two-dimensional conformal field theory describing the worldsheet of a string in string theory. It was introduced by Stanley Deser and Bruno Zumino and independently by L. Brink, P. Di Vecchia and P. S. Howe in 1976, and has become associated with Alexander Polyakov after he made use of it in quantizing the string in 1981. The action reads:

<span class="mw-page-title-main">Chiral model</span> Model of mesons in the massless quark limit

In nuclear physics, the chiral model, introduced by Feza Gürsey in 1960, is a phenomenological model describing effective interactions of mesons in the chiral limit (where the masses of the quarks go to zero), but without necessarily mentioning quarks at all. It is a nonlinear sigma model with the principal homogeneous space of a Lie group as its target manifold. When the model was originally introduced, this Lie group was the SU(N), where N is the number of quark flavors. The Riemannian metric of the target manifold is given by a positive constant multiplied by the Killing form acting upon the Maurer–Cartan form of SU(N).

Game theory is the branch of mathematics in which games are studied: that is, models describing human behaviour. This is a glossary of some terms of the subject.

In theoretical physics and mathematics, a Wess–Zumino–Witten (WZW) model, also called a Wess–Zumino–Novikov–Witten model, is a type of two-dimensional conformal field theory named after Julius Wess, Bruno Zumino, Sergei Novikov and Edward Witten. A WZW model is associated to a Lie group, and its symmetry algebra is the affine Lie algebra built from the corresponding Lie algebra. By extension, the name WZW model is sometimes used for any conformal field theory whose symmetry algebra is an affine Lie algebra.

In mathematical physics and differential geometry, a gravitational instanton is a four-dimensional complete Riemannian manifold satisfying the vacuum Einstein equations. They are so named because they are analogues in quantum theories of gravity of instantons in Yang–Mills theory. In accordance with this analogy with self-dual Yang–Mills instantons, gravitational instantons are usually assumed to look like four dimensional Euclidean space at large distances, and to have a self-dual Riemann tensor. Mathematically, this means that they are asymptotically locally Euclidean hyperkähler 4-manifolds, and in this sense, they are special examples of Einstein manifolds. From a physical point of view, a gravitational instanton is a non-singular solution of the vacuum Einstein equations with positive-definite, as opposed to Lorentzian, metric.

In mathematics and theoretical physics, twistor space is the complex vector space of solutions of the twistor equation . It was described in the 1960s by Roger Penrose and Malcolm MacCallum. According to Andrew Hodges, twistor space is useful for conceptualizing the way photons travel through space, using four complex numbers. He also posits that twistor space may aid in understanding the asymmetry of the weak nuclear force.

In theoretical physics, a twisted sector is a configuration of sectors in orbifold conformal field theories.

The tetrad formalism is an approach to general relativity that generalizes the choice of basis for the tangent bundle from a coordinate basis to the less restrictive choice of a local basis, i.e. a locally defined set of four linearly independent vector fields called a tetrad or vierbein. It is a special case of the more general idea of a vielbein formalism, which is set in (pseudo-)Riemannian geometry. This article as currently written makes frequent mention of general relativity; however, almost everything it says is equally applicable to (pseudo-)Riemannian manifolds in general, and even to spin manifolds. Most statements hold simply by substituting arbitrary for . In German, "vier" translates to "four", and "viel" to "many".

This page is a glossary of terms in string theory, including related areas such as supergravity, supersymmetry, and high energy physics.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

In category theory, a branch of mathematics, an ∞-groupoid is an abstract homotopical model for topological spaces. One model uses Kan complexes which are fibrant objects in the category of simplicial sets. It is an ∞-category generalization of a groupoid, a category in which every morphism is an isomorphism.

<span class="mw-page-title-main">Lie algebra extension</span> Creating a "larger" Lie algebra from a smaller one, in one of several ways

In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extensione is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.

In string theory, the Ramond–Neveu–Schwarz (RNS) formalism is an approach to formulating superstrings in which the worldsheet has explicit superconformal invariance but spacetime supersymmetry is hidden, in contrast to the Green–Schwarz formalism where the latter is explicit. It was originally developed by Pierre Ramond, André Neveu and John Schwarz in the RNS model in 1971, which gives rise to type II string theories and can also give type I string theory. Heterotic string theories can also be acquired through this formalism by using a different worldsheet action. There are various ways to quantize the string within this framework including light-cone quantization, old canonical quantization, and BRST quantization. A consistent string theory is only acquired if the spectrum of states is restricted through a procedure known as a GSO projection, with this projection being automatically present in the Green–Schwarz formalism.

Massless free scalar bosons are a family of two-dimensional conformal field theories, whose symmetry is described by an abelian affine Lie algebra.

References

  1. Di Francesco, Philippe; Mathieu, Pierre; Sénéchal, David (1997). Conformal Field Theory. p. 8. doi:10.1007/978-1-4612-2256-9. ISBN   978-1-4612-2256-9.
  2. Susskind, Leonard (1970). "Dual-symmetric theory of hadrons, I.". Nuovo Cimento A. 69 (1): 457–496.
  3. Tong, David. "Lectures on String Theory". Lectures on Theoretical Physics. Retrieved August 14, 2022.
  4. Polchinski, Joseph (1998). String Theory, Volume 1: Introduction to the Bosonic string.