String theory |
---|
Fundamental objects |
Perturbative theory |
Non-perturbative results |
Phenomenology |
Mathematics |
Bosonic string theory is the original version of string theory, developed in the late 1960s and named after Satyendra Nath Bose. It is so called because it contains only bosons in the spectrum.
In the 1980s, supersymmetry was discovered in the context of string theory, and a new version of string theory called superstring theory (supersymmetric string theory) became the real focus. Nevertheless, bosonic string theory remains a very useful model to understand many general features of perturbative string theory, and many theoretical difficulties of superstrings can actually already be found in the context of bosonic strings.
Although bosonic string theory has many attractive features, it falls short as a viable physical model in two significant areas.
First, it predicts only the existence of bosons whereas many physical particles are fermions.
Second, it predicts the existence of a mode of the string with imaginary mass, implying that the theory has an instability to a process known as "tachyon condensation".
In addition, bosonic string theory in a general spacetime dimension displays inconsistencies due to the conformal anomaly. But, as was first noticed by Claud Lovelace, [1] in a spacetime of 26 dimensions (25 dimensions of space and one of time), the critical dimension for the theory, the anomaly cancels. This high dimensionality is not necessarily a problem for string theory, because it can be formulated in such a way that along the 22 excess dimensions spacetime is folded up to form a small torus or other compact manifold. This would leave only the familiar four dimensions of spacetime visible to low energy experiments. The existence of a critical dimension where the anomaly cancels is a general feature of all string theories.
There are four possible bosonic string theories, depending on whether open strings are allowed and whether strings have a specified orientation. A theory of open strings must also include closed strings, because open strings can be thought of as having their endpoints fixed on a D25-brane that fills all of spacetime. A specific orientation of the string means that only interaction corresponding to an orientable worldsheet are allowed (e.g., two strings can only merge with equal orientation). A sketch of the spectra of the four possible theories is as follows:
Bosonic string theory | Non-positive states |
---|---|
Open and closed, oriented | tachyon, graviton, dilaton, massless antisymmetric tensor |
Open and closed, unoriented | tachyon, graviton, dilaton |
Closed, oriented | tachyon, graviton, dilaton, antisymmetric tensor, U(1) vector boson |
Closed, unoriented | tachyon, graviton, dilaton |
Note that all four theories have a negative energy tachyon () and a massless graviton.
The rest of this article applies to the closed, oriented theory, corresponding to borderless, orientable worldsheets.
Bosonic string theory can be said [2] to be defined by the path integral quantization of the Polyakov action:
is the field on the worldsheet describing the most embedding of the string in 25 +1 spacetime; in the Polyakov formulation, is not to be understood as the induced metric from the embedding, but as an independent dynamical field. is the metric on the target spacetime, which is usually taken to be the Minkowski metric in the perturbative theory. Under a Wick rotation, this is brought to a Euclidean metric . M is the worldsheet as a topological manifold parametrized by the coordinates. is the string tension and related to the Regge slope as .
has diffeomorphism and Weyl invariance. Weyl symmetry is broken upon quantization (Conformal anomaly) and therefore this action has to be supplemented with a counterterm, along with a hypothetical purely topological term, proportional to the Euler characteristic:
The explicit breaking of Weyl invariance by the counterterm can be cancelled away in the critical dimension 26.
Physical quantities are then constructed from the (Euclidean) partition function and N-point function:
The discrete sum is a sum over possible topologies, which for euclidean bosonic orientable closed strings are compact orientable Riemannian surfaces and are thus identified by a genus . A normalization factor is introduced to compensate overcounting from symmetries. While the computation of the partition function corresponds to the cosmological constant, the N-point function, including vertex operators, describes the scattering amplitude of strings.
The symmetry group of the action actually reduces drastically the integration space to a finite dimensional manifold. The path-integral in the partition function is a priori a sum over possible Riemannian structures; however, quotienting with respect to Weyl transformations allows us to only consider conformal structures, that is, equivalence classes of metrics under the identifications of metrics related by
Since the world-sheet is two dimensional, there is a 1-1 correspondence between conformal structures and complex structures. One still has to quotient away diffeomorphisms. This leaves us with an integration over the space of all possible complex structures modulo diffeomorphisms, which is simply the moduli space of the given topological surface, and is in fact a finite-dimensional complex manifold. The fundamental problem of perturbative bosonic strings therefore becomes the parametrization of Moduli space, which is non-trivial for genus .
At tree-level, corresponding to genus 0, the cosmological constant vanishes: .
The four-point function for the scattering of four tachyons is the Shapiro-Virasoro amplitude:
Where is the total momentum and , , are the Mandelstam variables.
Genus 1 is the torus, and corresponds to the one-loop level. The partition function amounts to:
is a complex number with positive imaginary part ; , holomorphic to the moduli space of the torus, is any fundamental domain for the modular group acting on the upper half-plane, for example . is the Dedekind eta function. The integrand is of course invariant under the modular group: the measure is simply the Poincaré metric which has PSL(2,R) as isometry group; the rest of the integrand is also invariant by virtue of and the fact that is a modular form of weight 1/2.
This integral diverges. This is due to the presence of the tachyon and is related to the instability of the perturbative vacuum.
In physics, Kaluza–Klein theory is a classical unified field theory of gravitation and electromagnetism built around the idea of a fifth dimension beyond the common 4D of space and time and considered an important precursor to string theory. In their setup, the vacuum has the usual 3 dimensions of space and one dimension of time but with another microscopic extra spatial dimension in the shape of a tiny circle. Gunnar Nordström had an earlier, similar idea. But in that case, a fifth component was added to the electromagnetic vector potential, representing the Newtonian gravitational potential, and writing the Maxwell equations in five dimensions.
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.
In special relativity, four-momentum (also called momentum–energy or momenergy) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum is a four-vector in spacetime. The contravariant four-momentum of a particle with relativistic energy E and three-momentum p = (px, py, pz) = γmv, where v is the particle's three-velocity and γ the Lorentz factor, is
In physics, in particular in special relativity and general relativity, a four-velocity is a four-vector in four-dimensional spacetime that represents the relativistic counterpart of velocity, which is a three-dimensional vector in space.
In mathematics and physics, n-dimensional anti-de Sitter space (AdSn) is a maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are named after Willem de Sitter (1872–1934), professor of astronomy at Leiden University and director of the Leiden Observatory. Willem de Sitter and Albert Einstein worked together closely in Leiden in the 1920s on the spacetime structure of the universe. Paul Dirac was the first person to rigorously explore anti-de Sitter space, doing so in 1963.
In string theory, a worldsheet is a two-dimensional manifold which describes the embedding of a string in spacetime. The term was coined by Leonard Susskind as a direct generalization of the world line concept for a point particle in special and general relativity.
In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. Propagators may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.
The Nambu–Goto action is the simplest invariant action in bosonic string theory, and is also used in other theories that investigate string-like objects. It is the starting point of the analysis of zero-thickness string behaviour, using the principles of Lagrangian mechanics. Just as the action for a free point particle is proportional to its proper time – i.e., the "length" of its world-line – a relativistic string's action is proportional to the area of the sheet which the string traces as it travels through spacetime.
In physics, the Polyakov action is an action of the two-dimensional conformal field theory describing the worldsheet of a string in string theory. It was introduced by Stanley Deser and Bruno Zumino and independently by L. Brink, P. Di Vecchia and P. S. Howe in 1976, and has become associated with Alexander Polyakov after he made use of it in quantizing the string in 1981. The action reads:
In mathematics and theoretical physics, the induced metric is the metric tensor defined on a submanifold that is induced from the metric tensor on a manifold into which the submanifold is embedded, through the pullback. It may be determined using the following formula, which is the component form of the pullback operation:
In a relativistic theory of physics, a Lorentz scalar is a scalar expression whose value is invariant under any Lorentz transformation. A Lorentz scalar may be generated from, e.g., the scalar product of vectors, or by contracting tensors. While the components of the contracted quantities may change under Lorentz transformations, the Lorentz scalars remain unchanged.
In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic.
In theoretical physics, Seiberg–Witten theory is an supersymmetric gauge theory with an exact low-energy effective action, of which the kinetic part coincides with the Kähler potential of the moduli space of vacua. Before taking the low-energy effective action, the theory is known as supersymmetric Yang–Mills theory, as the field content is a single vector supermultiplet, analogous to the field content of Yang–Mills theory being a single vector gauge field or connection.
A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.
Bumblebee models are effective field theories describing a vector field with a vacuum expectation value that spontaneously breaks Lorentz symmetry. A bumblebee model is the simplest case of a theory with spontaneous Lorentz symmetry breaking.
N = 4 supersymmetric Yang–Mills (SYM) theory is a relativistic conformally invariant Lagrangian gauge theory describing the interactions of fermions via gauge field exchanges. In D=4 spacetime dimensions, N=4 is the maximal number of supersymmetries or supersymmetry charges.
In string theory, the Ramond–Neveu–Schwarz (RNS) formalism is an approach to formulating superstrings in which the worldsheet has explicit superconformal invariance but spacetime supersymmetry is hidden, in contrast to the Green–Schwarz formalism where the latter is explicit. It was originally developed by Pierre Ramond, André Neveu and John Schwarz in the RNS model in 1971, which gives rise to type II string theories and can also give type I string theory. Heterotic string theories can also be acquired through this formalism by using a different worldsheet action. There are various ways to quantize the string within this framework including light-cone quantization, old canonical quantization, and BRST quantization. A consistent string theory is only acquired if the spectrum of states is restricted through a procedure known as a GSO projection, with this projection being automatically present in the Green–Schwarz formalism.
In supersymmetry, 4D supergravity is the theory of supergravity in four dimensions with a single supercharge. It contains exactly one supergravity multiplet, consisting of a graviton and a gravitino, but can also have an arbitrary number of chiral and vector supermultiplets, with supersymmetry imposing stringent constraints on how these can interact. The theory is primarily determined by three functions, those being the Kähler potential, the superpotential, and the gauge kinetic matrix. Many of its properties are strongly linked to the geometry associated to the scalar fields in the chiral multiplets. After the simplest form of this supergravity was first discovered, a theory involving only the supergravity multiplet, the following years saw an effort to incorporate different matter multiplets, with the general action being derived in 1982 by Eugène Cremmer, Sergio Ferrara, Luciano Girardello, and Antonie Van Proeyen.
In supersymmetry, type IIB supergravity is the unique supergravity in ten dimensions with two supercharges of the same chirality. It was first constructed in 1983 by John Schwarz and independently by Paul Howe and Peter West at the level of its equations of motion. While it does not admit a fully covariant action due to the presence of a self-dual field, it can be described by an action if the self-duality condition is imposed by hand on the resulting equations of motion. The other types of supergravity in ten dimensions are type IIA supergravity, which has two supercharges of opposing chirality, and type I supergravity, which has a single supercharge. The theory plays an important role in modern physics since it is the low-energy limit of type IIB string theory.
D'Hoker, Eric & Phong, D. H. (Oct 1988). "The geometry of string perturbation theory". Rev. Mod. Phys. 60 (4). American Physical Society: 917–1065. Bibcode:1988RvMP...60..917D. doi:10.1103/RevModPhys.60.917.
Belavin, A.A. & Knizhnik, V.G. (Feb 1986). "Complex geometry and the theory of quantum strings". ZhETF. 91 (2): 364–390. Bibcode:1986ZhETF..91..364B. Archived from the original on 2021-02-26. Retrieved 2015-04-24.