# Riemannian manifold

Last updated

In differential geometry, a Riemannian manifold or Riemannian space(M, g), so called after the German mathematician Bernhard Riemann, is a real, smooth manifold M equipped with a positive-definite inner product gp on the tangent space TpM at each point p.

## Contents

The family gp of inner products is called a Riemannian metric (or Riemannian metric tensor). Riemannian geometry is the study of Riemannian manifolds.

A common convention is to take g to be smooth, which means that for any smooth coordinate chart (U, x) on M, the n2 functions

${\displaystyle g\left({\frac {\partial }{\partial x^{i}}},{\frac {\partial }{\partial x^{j}}}\right):U\to \mathbb {R} }$

are smooth functions. These functions are commonly designated as ${\displaystyle g_{ij}}$.

With further restrictions on the ${\displaystyle g_{ij}}$, one could also consider Lipschitz Riemannian metrics or measurable Riemannian metrics, among many other possibilities.

A Riemannian metric (tensor) makes it possible to define several geometric notions on a Riemannian manifold, such as angle at an intersection, length of a curve, area of a surface and higher-dimensional analogues (volume, etc.), extrinsic curvature of submanifolds, and intrinsic curvature of the manifold itself.

## Introduction

In 1828, Carl Friedrich Gauss proved his Theorema Egregium ("remarkable theorem" in Latin), establishing an important property of surfaces. Informally, the theorem says that the curvature of a surface can be determined entirely by measuring distances along paths on the surface. That is, curvature does not depend on how the surface might be embedded in 3-dimensional space. See Differential geometry of surfaces . Bernhard Riemann extended Gauss's theory to higher-dimensional spaces called manifolds in a way that also allows distances and angles to be measured and the notion of curvature to be defined, again in a way that is intrinsic to the manifold and not dependent upon its embedding in higher-dimensional spaces. Albert Einstein used the theory of pseudo-Riemannian manifolds (a generalization of Riemannian manifolds) to develop his general theory of relativity. In particular, his equations for gravitation are constraints on the curvature of spacetime.

## Definition

The tangent bundle of a smooth manifold ${\displaystyle M}$ assigns to each point ${\displaystyle p}$ of ${\displaystyle M}$ a vector space ${\displaystyle T_{p}M}$ called the tangent space of ${\displaystyle M}$ at ${\displaystyle p.}$ A Riemannian metric (by its definition) assigns to each ${\displaystyle p}$ a positive-definite inner product ${\displaystyle g_{p}:T_{p}M\times T_{p}M\to \mathbb {R} ,}$ along with which comes a norm ${\displaystyle |\cdot |_{p}:T_{p}M\to \mathbb {R} }$ defined by ${\displaystyle |v|_{p}={\sqrt {g_{p}(v,v)}}.}$ The smooth manifold ${\displaystyle M}$ endowed with this metric ${\displaystyle g}$ is a Riemannian manifold, denoted ${\displaystyle (M,g)}$.

When given a system of smooth local coordinates on ${\displaystyle M,}$ given by ${\displaystyle n}$ real-valued functions ${\displaystyle (x^{1},\ldots ,x^{n}):U\to \mathbb {R} ^{n},}$ the vectors

${\displaystyle \left\{{\frac {\partial }{\partial x^{1}}}{\Big |}_{p},\dotsc ,{\frac {\partial }{\partial x^{n}}}{\Big |}_{p}\right\}}$

form a basis of the vector space ${\displaystyle T_{p}M,}$ for any ${\displaystyle p\in U.}$ Relative to this basis, one can define metric tensor "components" at each point ${\displaystyle p}$ by

${\displaystyle g_{ij}|_{p}:=g_{p}\left(\left.{\frac {\partial }{\partial x^{i}}}\right|_{p},\left.{\frac {\partial }{\partial x^{j}}}\right|_{p}\right).}$

One could consider these as ${\displaystyle n^{2}}$ individual functions ${\displaystyle g_{ij}:U\to \mathbb {R} }$ or as a single ${\displaystyle n\times n}$ matrix-valued function on ${\displaystyle U;}$ note that the "Riemannian" assumption says that it is valued in the subset consisting of symmetric positive-definite matrices.

In terms of tensor algebra, the metric tensor can be written in terms of the dual basis {dx1, ..., dxn} of the cotangent bundle as

${\displaystyle g=\sum _{i,j}g_{ij}\,\mathrm {d} x^{i}\otimes \mathrm {d} x^{j}.}$

### Isometries

If ${\displaystyle (M,g)}$ and ${\displaystyle (N,h)}$ are two Riemannian manifolds, with ${\displaystyle f:M\to N}$ a diffeomorphism, then ${\displaystyle f}$ is called an isometry if ${\displaystyle g=f^{\ast }h,}$ i.e. if

${\displaystyle g_{p}(u,v)=h_{f(p)}(df_{p}(u),df_{p}(v))}$

for all ${\displaystyle p\in M}$ and ${\displaystyle u,v\in T_{p}M.}$

One says that a map ${\displaystyle f:M\to N,}$ not assumed to be a diffeomorphism, is a local isometry if every ${\displaystyle p\in M}$ has an open neighborhood ${\displaystyle U}$ such that ${\displaystyle f:U\to f(U)}$ is an isometry (and thus a diffeomorphism).

### Regularity of a Riemannian metric

One says that the Riemannian metric ${\displaystyle g}$ is continuous if ${\displaystyle g_{ij}:U\to \mathbb {R} }$ are continuous when given any smooth coordinate chart ${\displaystyle (U,x).}$ One says that ${\displaystyle g}$ is smooth if these functions are smooth when given any smooth coordinate chart. One could also consider many other types of Riemannian metrics in this spirit.

In most expository accounts of Riemannian geometry, the metrics are always taken to be smooth. However, there can be important reasons to consider metrics which are less smooth. Riemannian metrics produced by methods of geometric analysis, in particular, can be less than smooth. See for instance (Gromov 1999) and (Shi and Tam 2002).

## Overview

Examples of Riemannian manifolds will be discussed below. A famous theorem of John Nash states that, given any smooth Riemannian manifold ${\displaystyle (M,g),}$ there is a (usually large) number ${\displaystyle N}$ and an embedding ${\displaystyle F:M\to \mathbb {R} ^{N}}$ such that the pullback by ${\displaystyle F}$ of the standard Riemannian metric on ${\displaystyle \mathbb {R} ^{N}}$ is ${\displaystyle g.}$ Informally, the entire structure of a smooth Riemannian manifold can be encoded by a diffeomorphism to a certain embedded submanifold of some Euclidean space. In this sense, it is arguable that nothing can be gained from the consideration of abstract smooth manifolds and their Riemannian metrics. However, there are many natural smooth Riemannian manifolds, such as the set of rotations of three-dimensional space and the hyperbolic space, of which any representation as a submanifold of Euclidean space will fail to represent their remarkable symmetries and properties as clearly as their abstract presentations do.

## Examples

### Euclidean space

Let ${\displaystyle x^{1},\ldots ,x^{n}}$ denote the standard coordinates on ${\displaystyle \mathbb {R} ^{n}.}$ Then define ${\displaystyle g_{p}^{\mathrm {can} }:T_{p}\mathbb {R} ^{n}\times T_{p}\mathbb {R} ^{n}\to \mathbb {R} }$ by

${\displaystyle \left(\sum _{i}a_{i}{\frac {\partial }{\partial x^{i}}},\sum _{j}b_{j}{\frac {\partial }{\partial x^{j}}}\right)\longmapsto \sum _{i}a_{i}b_{i}.}$

Phrased differently: relative to the standard coordinates, the local representation ${\displaystyle g_{ij}:U\to \mathbb {R} }$ is given by the constant value ${\displaystyle \delta _{ij}.}$

This is clearly a Riemannian metric, and is called the standard Riemannian structure on ${\displaystyle \mathbb {R} ^{n}.}$ It is also referred to as Euclidean space of dimension n and gijcan is also called the (canonical) Euclidean metric .

### Embedded submanifolds

Let ${\displaystyle (M,g)}$ be a Riemannian manifold and let ${\displaystyle N\subset M}$ be an embedded submanifold of ${\displaystyle M,}$ which is at least ${\displaystyle C^{1}.}$ Then the restriction of g to vectors tangent along N defines a Riemannian metric over N.

• For example, consider ${\displaystyle S^{n-1}=\{x\in \mathbb {R} ^{n}:(x^{1})^{2}+\cdots +(x^{n})^{2}=1.\},}$ which is a smooth embedded submanifold of the Euclidean space with its standard metric. The Riemannian metric this induces on ${\displaystyle S^{n-1}}$ is called the standard metric or canonical metric on ${\displaystyle S^{n-1}.}$
• There are many similar examples. For example, every ellipsoid in ${\displaystyle \mathbb {R} ^{3}}$ has a natural Riemannian metric. The graph of a smooth function ${\displaystyle f:\mathbb {R} ^{3}\to \mathbb {R} }$ is an embedded submanifold, and so has a natural Riemannian metric as well.

### Immersions

Let ${\displaystyle (M,g)}$ be a Riemannian manifold and let ${\displaystyle f:\Sigma \to M}$ be a differentiable map. Then one may consider the pullback of ${\displaystyle g}$ via ${\displaystyle f}$, which is a symmetric 2-tensor on ${\displaystyle \Sigma }$ defined by

${\displaystyle (f^{\ast }g)_{p}(v,w)=g_{f(p)}{\big (}df_{p}(v),df_{p}(w){\big )},}$

where ${\displaystyle df_{p}(v)}$ is the pushforward of ${\displaystyle v}$ by ${\displaystyle f.}$

In this setting, generally ${\displaystyle f^{\ast }g}$ will not be a Riemannian metric on ${\displaystyle \Sigma ,}$ since it is not positive-definite. For instance, if ${\displaystyle f}$ is constant, then ${\displaystyle f^{\ast }g}$ is zero. In fact, ${\displaystyle f^{\ast }g}$ is a Riemannian metric if and only if ${\displaystyle f}$ is an immersion, meaning that the linear map ${\displaystyle df_{p}:T_{p}\Sigma \to T_{f(p)}M}$ is injective for each ${\displaystyle p\in \Sigma .}$

• An important example occurs when ${\displaystyle (M,g)}$ is not simply-connected, so that there is a covering map ${\displaystyle {\widetilde {M}}\to M.}$ This is an immersion, and so the universal cover of any Riemannian manifold automatically inherits a Riemannian metric. More generally, but by the same principle, any covering space of a Riemannian manifold inherits a Riemannian metric.
• Also, an immersed submanifold of a Riemannian manifold inherits a Riemannian metric.

### Product metrics

Let ${\displaystyle (M,g)}$ and ${\displaystyle (N,h)}$ be two Riemannian manifolds, and consider the cartesian product ${\displaystyle M\times N}$ with the usual product smooth structure. The Riemannian metrics ${\displaystyle g}$ and ${\displaystyle h}$ naturally put a Riemannian metric ${\displaystyle {\widetilde {g}}}$ on ${\displaystyle M\times N,}$ which can be described in a few ways.

• Considering the decomposition ${\displaystyle T_{(p,q)}(M\times N)\cong T_{p}M\oplus T_{q}N,}$ one may define
${\displaystyle {\widetilde {g}}_{p,q}(u\oplus x,v\oplus y)=g_{p}(u,v)+h_{q}(x,y).}$
• Let ${\displaystyle (U,x)}$ be a smooth coordinate chart on ${\displaystyle M}$ and let ${\displaystyle (V,y)}$ be a smooth coordinate chart on ${\displaystyle N.}$ Then ${\displaystyle (U\times V,(x,y))}$ is a smooth coordinate chart on ${\displaystyle M\times N.}$ For convenience let ${\displaystyle \operatorname {Sym} _{n\times n}^{+}}$ denote the collection of positive-definite symmetric ${\displaystyle n\times n}$ real matrices. Denote the coordinate representation of ${\displaystyle g}$ relative to ${\displaystyle (U,x)}$ by ${\displaystyle g_{U}:U\to \operatorname {Sym} _{m\times m}^{+}}$ and denote the coordinate representation of ${\displaystyle h}$ relative to ${\displaystyle (V,y)}$ by ${\displaystyle h_{V}:V\to \operatorname {Sym} _{n\times n}^{+}.}$ Then the local coordinate representation of ${\displaystyle {\widetilde {g}}}$ relative to ${\displaystyle (U\times V,(x,y))}$ is ${\displaystyle {\widetilde {g}}_{U\times V}:U\times V\to \operatorname {Sym} _{(m+n)\times (m+n)}^{+}}$ given by
${\displaystyle (p,q)\mapsto {\begin{pmatrix}g_{U}(p)&0\\0&h_{V}(q)\end{pmatrix}}.}$

A standard example is to consider the n-torus ${\displaystyle T^{n},}$ define as the n-fold product ${\displaystyle S^{1}\times \cdots \times S^{1}.}$ If one gives each copy of ${\displaystyle S^{1}}$ its standard Riemannian metric, considering ${\displaystyle S^{1}\subset \mathbb {R} ^{2}}$ as an embedded submanifold (as above), then one can consider the product Riemannian metric on ${\displaystyle T^{n}.}$ It is called a flat torus.

### Convex combinations of metrics

Let ${\displaystyle g_{0}}$ and ${\displaystyle g_{1}}$ be two Riemannian metrics on ${\displaystyle M.}$ Then, for any number ${\displaystyle \lambda \in [0,1],}$

${\displaystyle {\tilde {g}}:=\lambda g_{0}+(1-\lambda )g_{1}}$

is also a Riemannian metric on ${\displaystyle M.}$ More generally, if ${\displaystyle a}$ and ${\displaystyle b}$ are any two positive numbers, then ${\displaystyle ag_{0}+bg_{1}}$ is another Riemannian metric.

## Every smooth manifold has a Riemannian metric

This is a fundamental result. Although much of the basic theory of Riemannian metrics can be developed by only using that a smooth manifold is locally Euclidean, for this result it is necessary to include in the definition of "smooth manifold" that it is Hausdorff and paracompact. The reason is that the proof makes use of a partition of unity.

Proof

Let ${\displaystyle M}$ be a differentiable manifold and ${\displaystyle \{(U_{\alpha },\varphi _{\alpha })\}_{\alpha \in I}}$ a locally finite atlas so that ${\displaystyle U_{\alpha }\subseteq M}$ are open subsets and ${\displaystyle \varphi _{\alpha }\colon U_{\alpha }\to \varphi _{\alpha }(U_{\alpha })\subseteq \mathbf {R} ^{n}}$ are diffeomorphisms.

Let ${\displaystyle \{\tau _{\alpha }\}_{\alpha \in I}}$ be a differentiable partition of unity subordinate to the given atlas, i.e. such that ${\displaystyle \operatorname {supp} \,\tau _{\alpha }\subseteq U_{\alpha }}$ for all ${\displaystyle \alpha \in I}$.

Then define the metric ${\displaystyle g}$ on ${\displaystyle M}$ by

${\displaystyle g:=\sum _{\beta \in I}\tau _{\beta }\cdot {\tilde {g}}_{\beta },\qquad {\text{with}}\qquad {\tilde {g}}_{\beta }:=\varphi _{\beta }^{*}g^{\mathrm {can} }\,\,{\text{on}}\,\,U_{\beta },}$

where ${\displaystyle g^{\mathrm {can} }}$ is the Euclidean metric on ${\displaystyle \mathbb {R} ^{n}}$ and ${\displaystyle \varphi _{\beta }^{*}g^{\mathrm {can} }}$ is its pullback along ${\displaystyle \varphi _{\beta }}$.

This is readily seen to be a metric on ${\displaystyle M}$.

## The metric space structure of continuous connected Riemannian manifolds

### The length of piecewise continuously-differentiable curves

If ${\displaystyle \gamma$ :[a,b]\to M} is differentiable, then it assigns to each ${\displaystyle t\in (a,b)}$ a vector ${\displaystyle \gamma '(t)}$ in the vector space ${\displaystyle T_{\gamma (t)}M,}$ the size of which can be measured by the norm ${\displaystyle |\cdot |_{\gamma (t)}.}$ So ${\displaystyle t\mapsto |\gamma '(t)|_{\gamma (t)}}$ defines a nonnegative function on the interval ${\displaystyle (a,b).}$ The length is defined as the integral of this function; however, as presented here, there is no reason to expect this function to be integrable. It is typical to suppose g to be continuous and ${\displaystyle \gamma }$ to be continuously differentiable, so that the function to be integrated is nonnegative and continuous, and hence the length of ${\displaystyle \gamma ,}$

${\displaystyle L(\gamma )=\int _{a}^{b}|\gamma '(t)|_{\gamma (t)}\,dt,}$

is well-defined. This definition can easily be extended to define the length of any piecewise-continuously differentiable curve.

In many instances, such as in defining the Riemann curvature tensor, it is necessary to require that g has more regularity than mere continuity; this will be discussed elsewhere. For now, continuity of g will be enough to use the length defined above in order to endow M with the structure of a metric space, provided that it is connected.

### The metric space structure

Precisely, define ${\displaystyle d_{g}:M\times M\to [0,\infty )}$ by

${\displaystyle d_{g}(p,q)=\inf\{L(\gamma ):\gamma {\text{ a piecewise continuously differentiable curve from }}p{\text{ to }}q\}.}$

It is mostly straightforward to check the well-definedness of the function ${\displaystyle d_{g},}$ its symmetry property ${\displaystyle d_{g}(p,q)=d_{g}(q,p),}$ its reflexivity property ${\displaystyle d_{g}(p,p)=0,}$ and the triangle inequality ${\displaystyle d_{g}(p,q)+d_{g}(q,r)\geq d_{g}(p,r),}$ although there are some minor technical complications (such as verifying that any two points can be connected by a piecewise-differentiable path). It is more fundamental to understand that ${\displaystyle p\neq q}$ ensures ${\displaystyle d_{g}(p,q)>0,}$ and hence that ${\displaystyle d_{g}}$ satisfies all of the axioms of a metric.

The observation that underlies the above proof, about comparison between lengths measured by g and Euclidean lengths measured in a smooth coordinate chart, also verifies that the metric space topology of ${\displaystyle (M,d_{g})}$ coincides with the original topological space structure of ${\displaystyle M.}$

Although the length of a curve is given by an explicit formula, it is generally impossible to write out the distance function ${\displaystyle d_{g}}$ by any explicit means. In fact, if ${\displaystyle M}$ is compact then, even when g is smooth, there always exist points where ${\displaystyle d_{g}:M\times M\to \mathbb {R} }$ is non-differentiable, and it can be remarkably difficult to even determine the location or nature of these points, even in seemingly simple cases such as when ${\displaystyle (M,g)}$ is an ellipsoid.

### Geodesics

As in the previous section, let ${\displaystyle (M,g)}$ be a connected and continuous Riemannian manifold; consider the associated metric space ${\displaystyle (M,d_{g}).}$ Relative to this metric space structure, one says that a path ${\displaystyle c:[a,b]\to M}$ is a unit-speed geodesic if for every ${\displaystyle t_{0}\in [a,b]}$ there exists an interval ${\displaystyle J\subset [a,b]}$ which contains ${\displaystyle t_{0}}$ and such that

${\displaystyle d_{g}(c(s),c(t))=|s-t|\qquad \forall s,t\in J.}$

Informally, one may say that one is asking for ${\displaystyle c}$ to locally 'stretch itself out' as much as it can, subject to the (informally considered) unit-speed constraint. The idea is that if ${\displaystyle c:[a,b]\to M}$ is (piecewise) continuously differentiable and ${\displaystyle |c'(t)|_{c(t)}=1}$ for all ${\displaystyle t,}$ then one automatically has ${\displaystyle d_{g}(c(s),c(t))\leq |s-t|}$ by applying the triangle inequality to a Riemann sum approximation of the integral defining the length of ${\displaystyle c.}$ So the unit-speed geodesic condition as given above is requiring ${\displaystyle c(s)}$ and ${\displaystyle c(t)}$ to be as far from one another as possible. The fact that we are only looking for curves to locally stretch themselves out is reflected by the first two examples given below; the global shape of ${\displaystyle (M,g)}$ may force even the most innocuous geodesics to bend back and intersect themselves.

• Consider the case that ${\displaystyle (M,g)}$ is the circle ${\displaystyle S^{1}}$ with its standard Riemannian metric, and ${\displaystyle c:\mathbb {R} \to S^{1}}$ is given by ${\displaystyle t\mapsto (\cos t,\sin t).}$ Recall that ${\displaystyle d_{g}}$ is measured by the lengths of curves along ${\displaystyle S^{1}}$, not by the straight-line paths in the plane. This example also exhibits the necessity of selecting out the subinterval ${\displaystyle J,}$ since the curve ${\displaystyle c}$ repeats back on itself in a particularly natural way.
• Likewise, if ${\displaystyle (M,g)}$ is the round sphere ${\displaystyle S^{2}}$ with its standard Riemannian metric, then a unit-speed path along an equatorial circle will be a geodesic. A unit-speed path along the other latitudinal circles will not be geodesic.
• Consider the case that ${\displaystyle (M,g)}$ is ${\displaystyle \mathbb {R} ^{2}}$ with its standard Riemannian metric. Then a unit-speed line such as ${\displaystyle t\mapsto (2^{-1/2}t,2^{-1/2}t)}$ is a geodesic but the curve ${\displaystyle c}$ from the first example above is not.

Note that unit-speed geodesics, as defined here, are by necessity continuous, and in fact Lipschitz, but they are not necessarily differentiable or piecewise differentiable.

### The Hopf–Rinow theorem

As above, let ${\displaystyle (M,g)}$ be a connected and continuous Riemannian manifold. The Hopf–Rinow theorem, in this setting, says that (Gromov 1999)

• if the metric space ${\displaystyle (M,d_{g})}$ is complete (i.e. every ${\displaystyle d_{g}}$-Cauchy sequence converges) then
• every closed and bounded subset of ${\displaystyle M}$ is compact.
• given any ${\displaystyle p,q\in M}$ there is a unit-speed geodesic ${\displaystyle c:[a,b]\to M}$ from ${\displaystyle p}$ to ${\displaystyle q}$ such that ${\displaystyle d_{g}(c(s),c(t))=|s-t|}$ for all ${\displaystyle s,t\in [a,b].}$

The essence of the proof is that once the first half is established, one may directly apply the Arzelà–Ascoli theorem, in the context of the compact metric space ${\displaystyle {\overline {B_{2d_{g}(p,q)}(p)}},}$ to a sequence of piecewise continuously-differentiable unit-speed curves from ${\displaystyle p}$ to ${\displaystyle q}$ whose lengths approximate ${\displaystyle d_{g}(p,q).}$ The resulting subsequential limit is the desired geodesic.

The assumed completeness of ${\displaystyle (M,d_{g})}$ is important. For example, consider the case that ${\displaystyle (M,g)}$ is the punctured plane ${\displaystyle \mathbb {R} ^{2}\smallsetminus \{(0,0)\}}$ with its standard Riemannian metric, and one takes ${\displaystyle p=(1,0)}$ and ${\displaystyle q=(-1,0).}$ There is no unit-speed geodesic from one to the other.

### The diameter

Let ${\displaystyle (M,g)}$ be a connected and continuous Riemannian manifold. As with any metric space, one can define the diameter of ${\displaystyle (M,d_{g})}$ to be

${\displaystyle \operatorname {diam} (M,d_{g})=\sup\{d_{g}(p,q):p,q\in M\}.}$

The Hopf–Rinow theorem shows that if ${\displaystyle (M,d_{g})}$ is complete and has finite diameter, then it is compact. Conversely, if ${\displaystyle (M,d_{g})}$ is compact, then the function ${\displaystyle d_{g}:M\times M\to \mathbb {R} }$ has a maximum, since it is a continuous function on a compact metric space. This proves the following statement:

• If ${\displaystyle (M,d_{g})}$ is complete, then it is compact if and only if it has finite diameter.

This is not the case without the completeness assumption; for counterexamples one could consider any open bounded subset of a Euclidean space with the standard Riemannian metric.

Note that, more generally, and with the same one-line proof, every compact metric space has finite diameter. However the following statement is false: "If a metric space is complete and has finite diameter, then it is compact." For an example of a complete and non-compact metric space of finite diameter, consider

${\displaystyle M={\Big \{}{\text{continuous functions }}f:[0,1]\to \mathbb {R} {\text{ with }}\sup _{x\in [0,1]}|f(x)|\leq 1{\Big \}}}$

with the uniform metric

${\displaystyle d(f,g)=\sup _{x\in [0,1]}|f(x)-g(x)|.}$

So, although all of the terms in the above corollary of the Hopf–Rinow theorem involve only the metric space structure of ${\displaystyle (M,g),}$ it is important that the metric is induced from a Riemannian structure.

## Riemannian metrics

### Geodesic completeness

A Riemannian manifold M is geodesically complete if for all pM, the exponential map expp is defined for all v ∈ TpM, i.e. if any geodesic γ(t) starting from p is defined for all values of the parameter tR. The Hopf–Rinow theorem asserts that M is geodesically complete if and only if it is complete as a metric space.

If M is complete, then M is non-extendable in the sense that it is not isometric to an open proper submanifold of any other Riemannian manifold. The converse is not true, however: there exist non-extendable manifolds that are not complete.

## Infinite-dimensional manifolds

The statements and theorems above are for finite-dimensional manifolds—manifolds whose charts map to open subsets of ${\displaystyle \mathbb {R} ^{n}.}$ These can be extended, to a certain degree, to infinite-dimensional manifolds; that is, manifolds that are modeled after a topological vector space; for example, Fréchet, Banach and Hilbert manifolds.

### Definitions

Riemannian metrics are defined in a way similar to the finite-dimensional case. However there is a distinction between two types of Riemannian metrics:

• A weak Riemannian metric on ${\displaystyle M}$ is a smooth function ${\displaystyle g:TM\times TM\to \mathbb {R} ,}$ such that for any ${\displaystyle x\in M}$ the restriction ${\displaystyle g_{x}:T_{x}M\times T_{x}M\to \mathbb {R} }$ is an inner product on ${\displaystyle T_{x}M.}$
• A strong Riemannian metric on ${\displaystyle M}$ is a weak Riemannian metric, such that ${\displaystyle g_{x}}$ induces the topology on ${\displaystyle T_{x}M.}$ Note that if ${\displaystyle M}$ is not a Hilbert manifold then ${\displaystyle g}$ cannot be a strong metric.

### Examples

• If ${\displaystyle (H,\langle \,\cdot ,\cdot \,\rangle )}$ is a Hilbert space, then for any ${\displaystyle x\in H,}$ one can identify ${\displaystyle H}$ with ${\displaystyle T_{x}H.}$ By setting for all ${\displaystyle x,u,v\in H}$${\displaystyle g_{x}(u,v)=\langle u,v\rangle }$ one obtains a strong Riemannian metric.
• Let ${\displaystyle (M,g)}$ be a compact Riemannian manifold and denote by ${\displaystyle \operatorname {Diff} (M)}$ its diffeomorphism group. It is a smooth manifold (see here) and in fact, a Lie group. Its tangent bundle at the identity is the set of smooth vector fields on ${\displaystyle M.}$ Let ${\displaystyle \mu }$ be a volume form on ${\displaystyle M.}$ Then one can define ${\displaystyle G,}$ the ${\displaystyle L^{2}}$ weak Riemannian metric, on ${\displaystyle \operatorname {Diff} (M).}$ Let ${\displaystyle f\in \operatorname {Diff} (M),}$${\displaystyle u,v\in T_{f}\operatorname {Diff} (M).}$ Then for ${\displaystyle x\in M,u(x)\in T_{f(x)}M}$ and define ${\displaystyle G_{f}(u,v)=\int _{M}g_{f(x)}(u(x),v(x))d\mu (x).}$ The ${\displaystyle L^{2}}$ weak Riemannian metric on ${\displaystyle \operatorname {Diff} (M)}$ induces vanishing geodesic distance, see Michor and Mumford (2005).

### The metric space structure

Length of curves is defined in a way similar to the finite-dimensional case. The function ${\displaystyle d_{g}:M\times M\to [0,\infty )}$ is defined in the same manner and is called the geodesic distance. In the finite-dimensional case, the proof that this function is a metric uses the existence of a pre-compact open set around any point. In the infinite case, open sets are no longer pre-compact and so this statement may fail.

• If ${\displaystyle g}$ is a strong Riemannian metric on ${\displaystyle M}$, then ${\displaystyle d_{g}}$ separates points (hence is a metric) and induces the original topology.
• If ${\displaystyle g}$ is a weak Riemannian metric but not strong, ${\displaystyle d_{g}}$ may fail to separate points or even be degenerate.

For an example of the latter, see Valentino and Daniele (2019).

### The Hopf–Rinow theorem

In the case of strong Riemannian metrics, a part of the finite-dimensional Hopf–Rinow still works.

Theorem: Let ${\displaystyle (M,g)}$ be a strong Riemannian manifold. Then metric completeness (in the metric ${\displaystyle d_{g}}$) implies geodesic completeness (geodesics exist for all time). Proof can be found in (Lang 1999, Chapter VII, Section 6). The other statements of the finite-dimensional case may fail. An example can be found here.

If ${\displaystyle g}$ is a weak Riemannian metric, then no notion of completeness implies the other in general.

## Related Research Articles

In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry.

In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed alternating nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.

In geometry, a geodesic is a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line".

In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature Kp) depends on a two-dimensional linear subspace σp of the tangent space at a point p of the manifold. It can be defined geometrically as the Gaussian curvature of the surface which has the plane σp as a tangent plane at p, obtained from geodesics which start at p in the directions of σp. The sectional curvature is a real-valued function on the 2-Grassmannian bundle over the manifold.

In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the requirement of positive-definiteness is relaxed.

In mathematics, specifically in differential topology, Morse theory enables one to analyze the topology of a manifold by studying differentiable functions on that manifold. According to the basic insights of Marston Morse, a typical differentiable function on a manifold will reflect the topology quite directly. Morse theory allows one to find CW structures and handle decompositions on manifolds and to obtain substantial information about their homology.

In mathematics, particularly differential geometry, a Finsler manifold is a differentiable manifold M where a (possibly asymmetric) Minkowski functionalF(x, −) is provided on each tangent space TxM, that enables one to define the length of any smooth curve γ : [a, b] → M as

In mathematics, and especially differential geometry and gauge theory, a connection on a fiber bundle is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. The most common case is that of a linear connection on a vector bundle, for which the notion of parallel transport must be linear. A linear connection is equivalently specified by a covariant derivative, an operator that differentiates sections of the bundle along tangent directions in the base manifold, in such a way that parallel sections have derivative zero. Linear connections generalize, to arbitrary vector bundles, the Levi-Civita connection on the tangent bundle of a pseudo-Riemannian manifold, which gives a standard way to differentiate vector fields. Nonlinear connections generalize this concept to bundles whose fibers are not necessarily linear.

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

In mathematics, a sub-Riemannian manifold is a certain type of generalization of a Riemannian manifold. Roughly speaking, to measure distances in a sub-Riemannian manifold, you are allowed to go only along curves tangent to so-called horizontal subspaces.

In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a Riemannian manifold that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.

In differential geometry, the Laplace–Beltrami operator is a generalization of the Laplace operator to functions defined on submanifolds in Euclidean space and, even more generally, on Riemannian and pseudo-Riemannian manifolds. It is named after Pierre-Simon Laplace and Eugenio Beltrami.

In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

In mathematics, more particularly in the fields of dynamical systems and geometric topology, an Anosov map on a manifold M is a certain type of mapping, from M to itself, with rather clearly marked local directions of "expansion" and "contraction". Anosov systems are a special case of Axiom A systems.

In mathematics, the geodesic equations are second-order non-linear differential equations, and are commonly presented in the form of Euler–Lagrange equations of motion. However, they can also be presented as a set of coupled first-order equations, in the form of Hamilton's equations. This latter formulation is developed in this article.

In differential geometry, normal coordinates at a point p in a differentiable manifold equipped with a symmetric affine connection are a local coordinate system in a neighborhood of p obtained by applying the exponential map to the tangent space at p. In a normal coordinate system, the Christoffel symbols of the connection vanish at the point p, thus often simplifying local calculations. In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold, one can additionally arrange that the metric tensor is the Kronecker delta at the point p, and that the first partial derivatives of the metric at p vanish.

In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the Gaussian curvature, first studied in depth by Carl Friedrich Gauss, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space.

In differential geometry and dynamical systems, a closed geodesic on a Riemannian manifold is a geodesic that returns to its starting point with the same tangent direction. It may be formalized as the projection of a closed orbit of the geodesic flow on the tangent space of the manifold.

In geometry, the Clifton–Pohl torus is an example of a compact Lorentzian manifold that is not geodesically complete. While every compact Riemannian manifold is also geodesically complete, this space shows that the same implication does not generalize to pseudo-Riemannian manifolds. It is named after Yeaton H. Clifton and William F. Pohl, who described it in 1962 but did not publish their result.

## References

• Lee, John M. (2018). Introduction to Riemannian Manifolds. Springer-Verlag. ISBN   978-3-319-91754-2.
• do Carmo, Manfredo (1992). Riemannian geometry. Basel: Birkhäuser. ISBN   978-0-8176-3490-2.
• Gromov, Misha (1999). Metric structures for Riemannian and non-Riemannian spaces (Based on the 1981 French original ed.). Birkhäuser Boston, Inc., Boston, MA. ISBN   0-8176-3898-9.
• Jost, Jürgen (2008). Riemannian Geometry and Geometric Analysis (5th ed.). Berlin: Springer-Verlag. ISBN   978-3-540-77340-5.
• Shi, Yuguang; Tam, Luen-Fai (2002). "Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature". J. Differential Geom. 62 (1): 79–125. doi:10.4310/jdg/1090425530. S2CID   13841883.
• Lang, Serge (1999). Fundamentals of differential geometry. New York: Springer-Verlag. ISBN   978-1-4612-0541-8.
• Magnani, Valentino; Tiberio, Daniele (2020). "A remark on vanishing geodesic distances in infinite dimensions". Proc. Amer. Math. Soc. 148 (1): 3653–3656. doi:10.1090/proc/14986. S2CID   204578276.
• Michor, Peter W.; Mumford, David (2005). "Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms". Documenta Math. 10: 217–245. arXiv:. doi:10.4171/dm/187. S2CID   69260.