In mathematics, a space form is a complete Riemannian manifold M of constant sectional curvature K. The three obvious examples are Euclidean n-space, the n-dimensional sphere, and hyperbolic space, although a space form need not be simply connected.
Mathematics includes the study of such topics as quantity, structure, space, and change.
In differential geometry, a (smooth) Riemannian manifold or (smooth) Riemannian space(M, g) is a real, smooth manifold M equipped with an inner product gp on the tangent space TpM at each point p that varies smoothly from point to point in the sense that if X and Y are differentiable vector fields on M, then p ↦ gp(X|p, Y|p) is a smooth function. The family gp of inner products is called a Riemannian metric. These terms are named after the German mathematician Bernhard Riemann. The study of Riemannian manifolds constitutes the subject called Riemannian geometry.
In mathematics, constant curvature is a concept from differential geometry. Here, curvature refers to the sectional curvature of a space and is a single number determining its local geometry. The sectional curvature is said to be constant if it has the same value at every point and for every two-dimensional tangent plane at that point. For example, a sphere is a surface of constant positive curvature.
The Killing–Hopf theorem of Riemannian geometry states that the universal cover of an n-dimensional space form with curvature is isometric to , hyperbolic space, with curvature is isometric to , Euclidean n-space, and with curvature is isometric to , the n-dimensional sphere of points distance 1 from the origin in .
In geometry, the Killing–Hopf theorem states that complete connected Riemannian manifolds of constant curvature are isometric to a quotient of a sphere, Euclidean space, or hyperbolic space by a group acting freely and properly discontinuously. These manifolds are called space forms. The Killing–Hopf theorem was proved by Killing (1891) and Hopf (1926).
In mathematics, a hyperbolic space is a homogeneous space that has a constant negative curvature, where in this case the curvature is the sectional curvature. It is hyperbolic geometry in more than 2 dimensions, and is distinguished from Euclidean spaces with zero curvature that define the Euclidean geometry, and elliptic geometry that have a constant positive curvature.
In geometry, Euclidean space encompasses the two-dimensional Euclidean plane, the three-dimensional space of Euclidean geometry, and similar spaces of higher dimension. It is named after the Ancient Greek mathematician Euclid of Alexandria. The term "Euclidean" distinguishes these spaces from other types of spaces considered in modern geometry. Euclidean spaces also generalize to higher dimensions.
By rescaling the Riemannian metric on , we may create a space of constant curvature for any . Similarly, by rescaling the Riemannian metric on , we may create a space of constant curvature for any . Thus the universal cover of a space form with constant curvature is isometric to .
This reduces the problem of studying space forms to studying discrete groups of isometries of which act properly discontinuously. Note that the fundamental group of , , will be isomorphic to . Groups acting in this manner on are called crystallographic groups. Groups acting in this manner on and are called Fuchsian groups and Kleinian groups, respectively.
In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a discontinuous sequence, meaning they are isolated from each other in a certain sense. The discrete topology is the finest topology that can be given on a set, i.e., it defines all subsets as open sets. In particular, each singleton is an open set in the discrete topology.
In mathematics, a group is a set equipped with a binary operation which combines any two elements to form a third element in such a way that four conditions called group axioms are satisfied, namely closure, associativity, identity and invertibility. One of the most familiar examples of a group is the set of integers together with the addition operation, but groups are encountered in numerous areas within and outside mathematics, and help focusing on essential structural aspects, by detaching them from the concrete nature of the subject of the study.
In mathematics, an isometry is a distance-preserving transformation between metric spaces, usually assumed to be bijective.
The space form problem is a conjecture stating that any two compact aspherical Riemannian manifolds with isomorphic fundamental groups are homeomorphic.
In mathematics, and more specifically in general topology, compactness is a property that generalizes the notion of a subset of Euclidean space being closed and bounded. Examples include a closed interval, a rectangle, or a finite set of points. This notion is defined for more general topological spaces than Euclidean space in various ways.
In topology, a branch of mathematics, an aspherical space is a topological space with all homotopy groups equal to 0 when .
In mathematics, an isomorphism is a homomorphism or morphism that can be reversed by an inverse morphism. Two mathematical objects are isomorphic if an isomorphism exists between them. An automorphism is an isomorphism whose source and target coincide. The interest of isomorphisms lies in the fact that two isomorphic objects cannot be distinguished by using only the properties used to define morphisms; thus isomorphic objects may be considered the same as long as one considers only these properties and their consequences.
The possible extensions are limited. One might wish to conjecture that the manifolds are isometric, but rescaling the Riemannian metric on a compact aspherical Riemannian manifold preserves the fundamental group and shows this to be false. One might also wish to conjecture that the manifolds are diffeomorphic, but John Milnor's exotic spheres are all homeomorphic and hence have isomorphic fundamental group, showing this to be false.
In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are smooth.
John Willard Milnor is an American mathematician known for his work in differential topology, K-theory and dynamical systems. Milnor is a distinguished professor at Stony Brook University and one of the four mathematicians to have won the Fields Medal, the Wolf Prize, and the Abel Prize.
In differential topology, an exotic sphere is a differentiable manifold M that is homeomorphic but not diffeomorphic to the standard Euclidean n-sphere. That is, M is a sphere from the point of view of all its topological properties, but carrying a smooth structure that is not the familiar one.
In mathematics, particularly in complex analysis, a Riemann surface is a one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together.
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a Riemannian metric, i.e. with an inner product on the tangent space at each point that varies smoothly from point to point. This gives, in particular, local notions of angle, length of curves, surface area and volume. From those, some other global quantities can be derived by integrating local contributions.
William Thurston's elliptization conjecture states that a closed 3-manifold with finite fundamental group is spherical, i.e. has a Riemannian metric of constant positive sectional curvature.
In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, represents the amount by which the volume of a narrow conical piece of a small geodesic ball in a curved Riemannian manifold deviates from that of the standard ball in Euclidean space. As such, it provides one way of measuring the degree to which the geometry determined by a given Riemannian metric might differ from that of ordinary Euclidean n-space. The Ricci tensor is defined on any pseudo-Riemannian manifold, as a trace of the Riemann curvature tensor. Like the metric itself, the Ricci tensor is a symmetric bilinear form on the tangent space of the manifold.
In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature K(σp) depends on a two-dimensional plane σp in the tangent space at a point p of the manifold. It is the Gaussian curvature of the surface which has the plane σp as a tangent plane at p, obtained from geodesics which start at p in the directions of σp. The sectional curvature is a smooth real-valued function on the 2-Grassmannian bundle over the manifold.
In Riemannian geometry, the scalar curvature is the simplest curvature invariant of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the intrinsic geometry of the manifold near that point. Specifically, the scalar curvature represents the amount by which the volume of a small geodesic ball in a Riemannian manifold deviates from that of the standard ball in Euclidean space. In two dimensions, the scalar curvature is twice the Gaussian curvature, and completely characterizes the curvature of a surface. In more than two dimensions, however, the curvature of Riemannian manifolds involves more than one functionally independent quantity.
In differential geometry, the Ricci flow is an intrinsic geometric flow. It is a process that deforms the metric of a Riemannian manifold in a way formally analogous to the diffusion of heat. Heuristically speaking, at every point of the manifold the Ricci flow shrinks directions of positive curvature and expands directions of negative curvature, while simultaneously smoothing out irregularities in the metric. The latter is analogous to the smoothing behavior of the heat equation.
In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil.
This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.
In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. It can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory.
In mathematics, a 3-manifold is a space that locally looks like Euclidean 3-dimensional space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below.
In differential geometry, a quaternion-Kähler manifold is a Riemannian 4n-manifold whose Riemannian holonomy group is a subgroup of Sp(n)·Sp(1) for some . Although this loose version of the definition includes hyperkähler manifolds, we will follow the standard convention of excluding these by also requiring that the scalar curvature be nonzero— as is automatically true if the holonomy group equals the entire group Sp(n)·Sp(1). The definition introduced by Edmond Bonan, in 1965, uses a 3-dimensional subbundle H of End(TM) of endomorphisms of the tangent bundle to a Riemannian M, that in 1976 Stefano Marchiafava and Giuliano Romani called I fibrato di Bonan. For M to be quaternion-Kähler, H should be preserved by the Levi-Civita connection and pointwise isomorphic to the imaginary quaternions which act on TM preserving the metric. Simultaneously, in 1965, Edmond Bonan and Vivian Yoh Kraines constructed the parallel 4-form. It was not until 1982 that Edmond Bonan proved an outstanding result : the analogue of hard Lefschetz theorem for compact Sp(n)·Sp(1)-manifold.
In Riemannian geometry, the sphere theorem, also known as the quarter-pinched sphere theorem, strongly restricts the topology of manifolds admitting metrics with a particular curvature bound. The precise statement of the theorem is as follows. If M is a complete, simply-connected, n-dimensional Riemannian manifold with sectional curvature taking values in the interval then M is homeomorphic to the n-sphere. Another way of stating the result is that if M is not homeomorphic to the sphere, then it is impossible to put a metric on M with quarter-pinched curvature.
In mathematics, Hopf conjecture may refer to one of several conjectural statements from differential geometry and topology attributed to either Eberhard Hopf or Heinz Hopf.
In mathematics, specifically geometric topology, the Borel conjecture asserts that an aspherical closed manifold is determined by its fundamental group, up to homeomorphism. It is a rigidity conjecture, demanding that a weak, algebraic notion of equivalence imply a stronger, topological notion.
In differential geometry, Mikhail Gromov's filling area conjecture asserts that the hemisphere has minimum area among the surfaces that fill a closed curve of given length without introducing shortcuts between its points.
In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the Gaussian curvature, first studied in depth by Carl Friedrich Gauss, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space.
Chern's conjecture for affinely flat manifolds, proposed by Shiing-Shen Chern in 1955 in the field of affine geometry, remains, as of 2018, an unsolved mathematical problem and states that the Euler characteristic of a compact affine manifold vanishes.