Fuchsian group

Last updated

In mathematics, a Fuchsian group is a discrete subgroup of PSL(2,R). The group PSL(2,R) can be regarded equivalently as a group of orientation-preserving isometries of the hyperbolic plane, or conformal transformations of the unit disc, or conformal transformations of the upper half plane, so a Fuchsian group can be regarded as a group acting on any of these spaces. There are some variations of the definition: sometimes the Fuchsian group is assumed to be finitely generated, sometimes it is allowed to be a subgroup of PGL(2,R) (so that it contains orientation-reversing elements), and sometimes it is allowed to be a Kleinian group (a discrete subgroup of PSL(2,C)) which is conjugate to a subgroup of PSL(2,R).


Fuchsian groups are used to create Fuchsian models of Riemann surfaces. In this case, the group may be called the Fuchsian group of the surface. In some sense, Fuchsian groups do for non-Euclidean geometry what crystallographic groups do for Euclidean geometry. Some Escher graphics are based on them (for the disc model of hyperbolic geometry).

General Fuchsian groups were first studied by HenriPoincaré  ( 1882 ), who was motivated by the paper ( Fuchs 1880 ), and therefore named them after Lazarus Fuchs.

Fuchsian groups on the upper half-plane

Let H = {z in C : Im(z) > 0} be the upper half-plane. Then H is a model of the hyperbolic plane when endowed with the metric

The group PSL(2,R) acts on H by linear fractional transformations (also known as Möbius transformations):

This action is faithful, and in fact PSL(2,R) is isomorphic to the group of all orientation-preserving isometries of H.

A Fuchsian group Γ may be defined to be a subgroup of PSL(2,R), which acts discontinuously on H. That is,

An equivalent definition for Γ to be Fuchsian is that Γ be a discrete group , which means that:

Although discontinuity and discreteness are equivalent in this case, this is not generally true for the case of an arbitrary group of conformal homeomorphisms acting on the full Riemann sphere (as opposed to H). Indeed, the Fuchsian group PSL(2,Z) is discrete but has accumulation points on the real number line Im z = 0: elements of PSL(2,Z) will carry z = 0 to every rational number, and the rationals Q are dense in R.

General definition

A linear fractional transformation defined by a matrix from PSL(2,C) will preserve the Riemann sphere P1(C) = C ∪ ∞, but will send the upper-half plane H to some open disk Δ. Conjugating by such a transformation will send a discrete subgroup of PSL(2,R) to a discrete subgroup of PSL(2,C) preserving Δ.

This motivates the following definition of a Fuchsian group. Let Γ ⊂ PSL(2,C) act invariantly on a proper, open disk Δ ⊂ C ∪ ∞, that is, Γ(Δ) = Δ. Then Γ is Fuchsian if and only if any of the following three equivalent properties hold:

  1. Γ is a discrete group (with respect to the standard topology on PSL(2,C)).
  2. Γ acts properly discontinuously at each point z ∈ Δ.
  3. The set Δ is a subset of the region of discontinuity Ω(Γ) of Γ.

That is, any one of these three can serve as a definition of a Fuchsian group, the others following as theorems. The notion of an invariant proper subset Δ is important; the so-called Picard group PSL(2,Z[i]) is discrete but does not preserve any disk in the Riemann sphere. Indeed, even the modular group PSL(2,Z), which is a Fuchsian group, does not act discontinuously on the real number line; it has accumulation points at the rational numbers. Similarly, the idea that Δ is a proper subset of the region of discontinuity is important; when it is not, the subgroup is called a Kleinian group.

It is most usual to take the invariant domain Δ to be either the open unit disk or the upper half-plane.

Limit sets

Because of the discrete action, the orbit Γz of a point z in the upper half-plane under the action of Γ has no accumulation points in the upper half-plane. There may, however, be limit points on the real axis. Let Λ(Γ) be the limit set of Γ, that is, the set of limit points of Γz for zH. Then Λ(Γ) ⊆ R ∪ ∞. The limit set may be empty, or may contain one or two points, or may contain an infinite number. In the latter case, there are two types:

A Fuchsian group of the first type is a group for which the limit set is the closed real line R ∪ ∞. This happens if the quotient space H/Γ has finite volume, but there are Fuchsian groups of the first kind of infinite covolume.

Otherwise, a Fuchsian group is said to be of the second type. Equivalently, this is a group for which the limit set is a perfect set that is nowhere dense on R ∪ ∞. Since it is nowhere dense, this implies that any limit point is arbitrarily close to an open set that is not in the limit set. In other words, the limit set is a Cantor set.

The type of a Fuchsian group need not be the same as its type when considered as a Kleinian group: in fact, all Fuchsian groups are Kleinian groups of type 2, as their limit sets (as Kleinian groups) are proper subsets of the Riemann sphere, contained in some circle.


An example of a Fuchsian group is the modular group, PSL(2,Z). This is the subgroup of PSL(2,R) consisting of linear fractional transformations

where a, b, c, d are integers. The quotient space H/PSL(2,Z) is the moduli space of elliptic curves.

Other Fuchsian groups include the groups Γ(n) for each integer n > 0. Here Γ(n) consists of linear fractional transformations of the above form where the entries of the matrix

are congruent to those of the identity matrix modulo n.

A co-compact example is the (ordinary, rotational) (2,3,7) triangle group, containing the Fuchsian groups of the Klein quartic and of the Macbeath surface, as well as other Hurwitz groups. More generally, any hyperbolic von Dyck group (the index 2 subgroup of a triangle group, corresponding to orientation-preserving isometries) is a Fuchsian group.

All these are Fuchsian groups of the first kind.

Metric properties

If h is a hyperbolic element, the translation length L of its action in the upper half-plane is related to the trace of h as a 2×2 matrix by the relation

A similar relation holds for the systole of the corresponding Riemann surface, if the Fuchsian group is torsion-free and co-compact.

See also

Related Research Articles

In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form

<span class="mw-page-title-main">Modular group</span> Orientation-preserving mapping class group of the torus

In mathematics, the modular group is the projective special linear group of 2 × 2 matrices with integer coefficients and determinant 1. The matrices A and A are identified. The modular group acts on the upper-half of the complex plane by fractional linear transformations, and the name "modular group" comes from the relation to moduli spaces and not from modular arithmetic.

In mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example would be invertible 2 × 2 integer matrices of determinant 1, in which the off-diagonal entries are even. More generally, the notion of congruence subgroup can be defined for arithmetic subgroups of algebraic groups; that is, those for which we have a notion of 'integral structure' and can define reduction maps modulo an integer.

In mathematics, the projective special linear group PSL(2, 7), isomorphic to GL(3, 2), is a finite simple group that has important applications in algebra, geometry, and number theory. It is the automorphism group of the Klein quartic as well as the symmetry group of the Fano plane. With 168 elements, PSL(2, 7) is the smallest nonabelian simple group after the alternating group A5 with 60 elements, isomorphic to PSL(2, 5).

In mathematics, a linear fractional transformation is, roughly speaking, an invertible transformation of the form

<span class="mw-page-title-main">Poincaré half-plane model</span> Upper-half plane model of hyperbolic non-Euclidean geometry

In non-Euclidean geometry, the Poincaré half-plane model is the upper half-plane, denoted below as H, together with a metric, the Poincaré metric, that makes it a model of two-dimensional hyperbolic geometry.

<span class="mw-page-title-main">Discrete group</span>

In mathematics, a topological group G is called a discrete group if there is no limit point in it. Equivalently, the group G is discrete if and only if its identity is isolated.

In mathematics, a prime geodesic on a hyperbolic surface is a primitive closed geodesic, i.e. a geodesic which is a closed curve that traces out its image exactly once. Such geodesics are called prime geodesics because, among other things, they obey an asymptotic distribution law similar to the prime number theorem.

In number theory and algebraic geometry, a modular curveY(Γ) is a Riemann surface, or the corresponding algebraic curve, constructed as a quotient of the complex upper half-plane H by the action of a congruence subgroup Γ of the modular group of integral 2×2 matrices SL(2, Z). The term modular curve can also be used to refer to the compactified modular curvesX(Γ) which are compactifications obtained by adding finitely many points to this quotient. The points of a modular curve parametrize isomorphism classes of elliptic curves, together with some additional structure depending on the group Γ. This interpretation allows one to give a purely algebraic definition of modular curves, without reference to complex numbers, and, moreover, prove that modular curves are defined either over the field of rational numbers Q or a cyclotomic field Qn). The latter fact and its generalizations are of fundamental importance in number theory.

In mathematics, the Selberg trace formula, introduced by Selberg (1956), is an expression for the character of the unitary representation of a Lie group G on the space L2(Γ\G) of square-integrable functions, where Γ is a cofinite discrete group. The character is given by the trace of certain functions on G.

<span class="mw-page-title-main">Kleinian group</span> Discrete group of Möbius transformations

In mathematics, a Kleinian group is a discrete subgroup of the group of orientation-preserving isometries of hyperbolic 3-space H3. The latter, identifiable with PSL(2, C), is the quotient group of the 2 by 2 complex matrices of determinant 1 by their center, which consists of the identity matrix and its product by −1. PSL(2, C) has a natural representation as orientation-preserving conformal transformations of the Riemann sphere, and as orientation-preserving conformal transformations of the open unit ball B3 in R3. The group of Möbius transformations is also related as the non-orientation-preserving isometry group of H3, PGL(2, C). So, a Kleinian group can be regarded as a discrete subgroup acting on one of these spaces.

In mathematics, a Fuchsian model is a representation of a hyperbolic Riemann surface R as a quotient of the upper half-plane H by a Fuchsian group. Every hyperbolic Riemann surface admits such a representation. The concept is named after Lazarus Fuchs.

In mathematics, a Kleinian model is a model of a three-dimensional hyperbolic manifold N by the quotient space where is a discrete subgroup of PSL(2,C). Here, the subgroup , a Kleinian group, is defined so that it is isomorphic to the fundamental group of the surface N. Many authors use the terms Kleinian group and Kleinian model interchangeably, letting one stand for the other. The concept is named after Felix Klein.

In mathematics, a fundamental polygon can be defined for every compact Riemann surface of genus greater than 0. It encodes not only the topology of the surface through its fundamental group but also determines the Riemann surface up to conformal equivalence. By the uniformization theorem, every compact Riemann surface has simply connected universal covering surface given by exactly one of the following:

In geometry, a Schwarz triangle, named after Hermann Schwarz, is a spherical triangle that can be used to tile a sphere, possibly overlapping, through reflections in its edges. They were classified in Schwarz (1873).

In mathematics, more particularly in the fields of dynamical systems and geometric topology, an Anosov map on a manifold M is a certain type of mapping, from M to itself, with rather clearly marked local directions of "expansion" and "contraction". Anosov systems are a special case of Axiom A systems.

SL<sub>2</sub>(<b>R</b>) Group of real 2×2 matrices with unit determinant

In mathematics, the special linear group SL(2, R) or SL2(R) is the group of 2 × 2 real matrices with determinant one:

In mathematics, the ping-pong lemma, or table-tennis lemma, is any of several mathematical statements that ensure that several elements in a group acting on a set freely generates a free subgroup of that group.

In mathematics, the trace field of a linear group is the field generated by the traces of its elements. It is mostly studied for Kleinian and Fuchsian groups, though related objects are used in the theory of lattices in Lie groups, often under the name field of definition.

Arithmetic Fuchsian groups are a special class of Fuchsian groups constructed using orders in quaternion algebras. They are particular instances of arithmetic groups. The prototypical example of an arithmetic Fuchsian group is the modular group . They, and the hyperbolic surface associated to their action on the hyperbolic plane often exhibit particularly regular behaviour among Fuchsian groups and hyperbolic surfaces.