Unit disk

Last updated
An open Euclidean unit disk Unit disk open.svg
An open Euclidean unit disk

In mathematics, the open unit disk (or disc) around P (where P is a given point in the plane), is the set of points whose distance from P is less than 1:


The closed unit disk around P is the set of points whose distance from P is less than or equal to one:

Unit disks are special cases of disks and unit balls; as such, they contain the interior of the unit circle and, in the case of the closed unit disk, the unit circle itself.

Without further specifications, the term unit disk is used for the open unit disk about the origin, , with respect to the standard Euclidean metric. It is the interior of a circle of radius 1, centered at the origin. This set can be identified with the set of all complex numbers of absolute value less than one. When viewed as a subset of the complex plane (C), the unit disk is often denoted .

The open unit disk, the plane, and the upper half-plane

The function

is an example of a real analytic and bijective function from the open unit disk to the plane; its inverse function is also analytic. Considered as a real 2-dimensional analytic manifold, the open unit disk is therefore isomorphic to the whole plane. In particular, the open unit disk is homeomorphic to the whole plane.

There is however no conformal bijective map between the open unit disk and the plane. Considered as a Riemann surface, the open unit disk is therefore different from the complex plane.

There are conformal bijective maps between the open unit disk and the open upper half-plane. So considered as a Riemann surface, the open unit disk is isomorphic ("biholomorphic", or "conformally equivalent") to the upper half-plane, and the two are often used interchangeably.

Much more generally, the Riemann mapping theorem states that every simply connected open subset of the complex plane that is different from the complex plane itself admits a conformal and bijective map to the open unit disk.

One bijective conformal map from the open unit disk to the open upper half-plane is the Möbius transformation

  which is the inverse of the Cayley transform.

Geometrically, one can imagine the real axis being bent and shrunk so that the upper half-plane becomes the disk's interior and the real axis forms the disk's circumference, save for one point at the top, the "point at infinity". A bijective conformal map from the open unit disk to the open upper half-plane can also be constructed as the composition of two stereographic projections: first the unit disk is stereographically projected upward onto the unit upper half-sphere, taking the "south-pole" of the unit sphere as the projection center, and then this half-sphere is projected sideways onto a vertical half-plane touching the sphere, taking the point on the half-sphere opposite to the touching point as projection center.

The unit disk and the upper half-plane are not interchangeable as domains for Hardy spaces. Contributing to this difference is the fact that the unit circle has finite (one-dimensional) Lebesgue measure while the real line does not.

Hyperbolic plane

The open unit disk forms the set of points for the Poincaré disk model of the hyperbolic plane. Circular arcs perpendicular to the unit circle form the "lines" in this model. The unit circle is the Cayley absolute that determines a metric on the disk through use of cross-ratio in the style of the Cayley–Klein metric. In the language of differential geometry, the circular arcs perpendicular to the unit circle are geodesics that show the shortest distance between points in the model. The model includes motions which are expressed by the special unitary group SU(1,1). The disk model can be transformed to the Poincaré half-plane model by the mapping g given above.

Both the Poincaré disk and the Poincaré half-plane are conformal models of the hyperbolic plane, which is to say that angles between intersecting curves are preserved by motions of their isometry groups.

Another model of hyperbolic space is also built on the open unit disk: the Beltrami-Klein model. It is not conformal, but has the property that the geodesics are straight lines.

Unit disks with respect to other metrics

From top to bottom: open unit disk in the Euclidean metric, taxicab metric, and Chebyshev metric. Unit disc metrics.svg
From top to bottom: open unit disk in the Euclidean metric, taxicab metric, and Chebyshev metric.

One also considers unit disks with respect to other metrics. For instance, with the taxicab metric and the Chebyshev metric disks look like squares (even though the underlying topologies are the same as the Euclidean one).

The area of the Euclidean unit disk is π and its perimeter is 2π. In contrast, the perimeter (relative to the taxicab metric) of the unit disk in the taxicab geometry is 8. In 1932, Stanisław Gołąb proved that in metrics arising from a norm, the perimeter of the unit disk can take any value in between 6 and 8, and that these extremal values are obtained if and only if the unit disk is a regular hexagon or a parallelogram, respectively.

See also

Related Research Articles

Surface (topology) Two-dimensional manifold

In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solids; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space.

Conformal map mathematical function which preserves angles

In mathematics, a conformal map is a function that locally preserves angles, but not necessarily lengths.

Stereographic projection particular mapping that projects a sphere onto a plane

In geometry, the stereographic projection is a particular mapping (function) that projects a sphere onto a plane. The projection is defined on the entire sphere, except at one point: the projection point. Where it is defined, the mapping is smooth and bijective. It is conformal, meaning that it preserves angles at which curves meet. It is neither isometric nor area-preserving: that is, it preserves neither distances nor the areas of figures.

Riemann surface one-dimensional complex manifold

In mathematics, particularly in complex analysis, a Riemann surface is a one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together.

Hyperbolic geometry Non-Euclidean geometry

In mathematics, hyperbolic geometry is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:

In mathematics, the upper half-planeH is the set of points (x, y) in the Cartesian plane with y > 0.

In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form

Hyperbolic space Non-Euclidean geometry

In mathematics, a hyperbolic space is a homogeneous space that has a constant negative curvature, where in this case the curvature is the sectional curvature. It is hyperbolic geometry in more than 2 dimensions, and is distinguished from Euclidean spaces with zero curvature that define the Euclidean geometry, and elliptic geometry that have a constant positive curvature.

In mathematics, a linear fractional transformation is, roughly speaking, a transformation of the form

Poincaré half-plane model Upper-half plane model of hyperbolic non-Euclidean geometry

In non-Euclidean geometry, the Poincaré half-plane model is the upper half-plane, denoted below as H, together with a metric, the Poincaré metric, that makes it a model of two-dimensional hyperbolic geometry.

In mathematics, a Fuchsian group is a discrete subgroup of PSL(2,R). The group PSL(2,R) can be regarded equivalently as a group of isometries of the hyperbolic plane, or conformal transformations of the unit disc, or conformal transformations of the upper half plane, so a Fuchsian group can be regarded as a group acting on any of these spaces. There are some variations of the definition: sometimes the Fuchsian group is assumed to be finitely generated, sometimes it is allowed to be a subgroup of PGL(2,R), and sometimes it is allowed to be a Kleinian group which is conjugate to a subgroup of PSL(2,R).

In geometry, hyperbolic motions are isometric automorphisms of a hyperbolic space. Under composition of mappings, the hyperbolic motions form a continuous group. This group is said to characterize the hyperbolic space. Such an approach to geometry was cultivated by Felix Klein in his Erlangen program. The idea of reducing geometry to its characteristic group was developed particularly by Mario Pieri in his reduction of the primitive notions of geometry to merely point and motion.

Schwarz lemma lemma

In mathematics, the Schwarz lemma, named after Hermann Amandus Schwarz, is a result in complex analysis about holomorphic functions from the open unit disk to itself. The lemma is less celebrated than stronger theorems, such as the Riemann mapping theorem, which it helps to prove. It is, however, one of the simplest results capturing the rigidity of holomorphic functions.

In mathematics, the Poincaré metric, named after Henri Poincaré, is the metric tensor describing a two-dimensional surface of constant negative curvature. It is the natural metric commonly used in a variety of calculations in hyperbolic geometry or Riemann surfaces.

In mathematics, a fundamental polygon can be defined for every compact Riemann surface of genus greater than 0. It encodes not only the topology of the surface through its fundamental group but also determines the Riemann surface up to conformal equivalence. By the uniformization theorem, every compact Riemann surface has simply connected universal covering surface given by exactly one of the following:

Beltrami–Klein model

In geometry, the Beltrami–Klein model, also called the projective model, Klein disk model, and the Cayley–Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit disk and lines are represented by the chords, straight line segments with ideal endpoints on the boundary sphere.

Ideal point point at infinity in hyperbolic geometry

In hyperbolic geometry, an ideal point, omega point or point at infinity is a well defined point outside the hyperbolic plane or space. Given a line l and a point P not on l, right- and left-limiting parallels to l through P converge to l at ideal points.

Differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric

In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the Gaussian curvature, first studied in depth by Carl Friedrich Gauss, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space.

Poincaré disk model model of hyperbolic geometry

In geometry, the Poincaré disk model, also called the conformal disk model, is a model of 2-dimensional hyperbolic geometry in which the points of the geometry are inside the unit disk, and the straight lines consist of all circular arcs contained within that disk that are orthogonal to the boundary of the disk, plus all diameters of the disk.

Schwarz triangle function Conformal map in complex analysis

In complex analysis, the Schwarz triangle function or Schwarz s-function is a function that conformally maps the upper half plane to a triangle in the upper half plane having lines or circular arcs for edges. Let πα, πβ, and πγ be the interior angles at the vertices of the triangle. If any of α, β, and γ are greater than zero, then the Schwarz triangle function can be given in terms of hypergeometric functions as: