In mathematics, a **topological space** is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate.

- History
- Definitions
- Definition via neighbourhoods
- Definition via open sets
- Definition via closed sets
- Other definitions
- Comparison of topologies
- Continuous functions
- Examples of topological spaces
- Metric spaces
- Proximity spaces
- Uniform spaces
- Function spaces
- Cauchy spaces
- Convergence spaces
- Grothendieck sites
- Other spaces
- Topological constructions
- Classification of topological spaces
- Topological spaces with algebraic structure
- Topological spaces with order structure
- See also
- Citations
- Bibliography
- External links

A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness.^{ [1] }^{ [2] } Common types of topological spaces include Euclidean spaces, metric spaces and manifolds.

Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topological spaces in their own right is called point-set topology or general topology.

Around 1735, Leonhard Euler discovered the formula relating the number of vertices, edges and faces of a convex polyhedron, and hence of a planar graph. The study and generalization of this formula, specifically by Cauchy (1789–1857) and L'Huilier (1750–1840), boosted the study of topology. In 1827, Carl Friedrich Gauss published *General investigations of curved surfaces*, which in section 3 defines the curved surface in a similar manner to the modern topological understanding: "A curved surface is said to possess continuous curvature at one of its points A, if the direction of all the straight lines drawn from A to points of the surface at an infinitesimal distance from A are deflected infinitesimally from one and the same plane passing through A."^{ [3] }

Yet, "until Riemann's work in the early 1850s, surfaces were always dealt with from a local point of view (as parametric surfaces) and topological issues were never considered".^{ [4] } " Möbius and Jordan seem to be the first to realize that the main problem about the topology of (compact) surfaces is to find invariants (preferably numerical) to decide the equivalence of surfaces, that is, to decide whether two surfaces are homeomorphic or not."^{ [4] }

The subject is clearly defined by Felix Klein in his "Erlangen Program" (1872): the geometry invariants of arbitrary continuous transformation, a kind of geometry. The term "topology" was introduced by Johann Benedict Listing in 1847, although he had used the term in correspondence some years earlier instead of previously used "Analysis situs". The foundation of this science, for a space of any dimension, was created by Henri Poincaré. His first article on this topic appeared in 1894.^{ [5] } In the 1930s, James Waddell Alexander II and Hassler Whitney first expressed the idea that a surface is a topological space that is locally like a Euclidean plane.

Topological spaces were first defined by Felix Hausdorff in 1914 in his seminal "Principles of Set Theory". Metric spaces had been defined earlier in 1906 by Maurice Fréchet, though it was Hausdorff who popularised the term "metric space" (German : *metrischer Raum*).^{ [6] }^{ [7] }

The utility of the concept of a *topology* is shown by the fact that there are several equivalent definitions of this mathematical structure. Thus one chooses the axiomatization suited for the application. The most commonly used is that in terms of * open sets *, but perhaps more intuitive is that in terms of * neighbourhoods * and so this is given first.

This axiomatization is due to Felix Hausdorff. Let be a (possibly empty) set. The elements of are usually called *points*, though they can be any mathematical object. Let be a function assigning to each (point) in a non-empty collection of subsets of The elements of will be called *neighbourhoods* of with respect to (or, simply, *neighbourhoods of *). The function is called a neighbourhood topology if the axioms below^{ [8] } are satisfied; and then with is called a **topological space**.

- If is a neighbourhood of (i.e., ), then In other words, each point of the set belongs to every one of its neighbourhoods with respect to .
- If is a subset of and includes a neighbourhood of then is a neighbourhood of I.e., every superset of a neighbourhood of a point is again a neighbourhood of
- The intersection of two neighbourhoods of is a neighbourhood of
- Any neighbourhood of includes a neighbourhood of such that is a neighbourhood of each point of

The first three axioms for neighbourhoods have a clear meaning. The fourth axiom has a very important use in the structure of the theory, that of linking together the neighbourhoods of different points of

A standard example of such a system of neighbourhoods is for the real line where a subset of is defined to be a *neighbourhood* of a real number if it includes an open interval containing

Given such a structure, a subset of is defined to be **open** if is a neighbourhood of all points in The open sets then satisfy the axioms given below in the next definition of a topological space. Conversely, when given the open sets of a topological space, the neighbourhoods satisfying the above axioms can be recovered by defining to be a neighbourhood of if includes an open set such that ^{ [9] }

A *topology* on a set X may be defined as a collection of subsets of X, called **open sets** and satisfying the following axioms:^{ [10] }

- The empty set and itself belong to
- Any arbitrary (finite or infinite) union of members of belongs to
- The intersection of any finite number of members of belongs to

As this definition of a topology is the most commonly used, the set of the open sets is commonly called a **topology** on

A subset is said to be *closed* in if its complement is an open set.

- Given the trivial or
*indiscrete*topology on is the family consisting of only the two subsets of required by the axioms forms a topology on - Given the family of six subsets of forms another topology of
- Given the discrete topology on is the power set of which is the family consisting of all possible subsets of In this case the topological space is called a
*discrete space*. - Given the set of integers, the family of all finite subsets of the integers plus itself is
*not*a topology, because (for example) the union of all finite sets not containing zero is not finite and therefore not a member of the family of finite sets. The union of all finite sets not containing zero is also not all of and so it cannot be in

Using de Morgan's laws, the above axioms defining open sets become axioms defining ** closed sets **:

- The empty set and are closed.
- The intersection of any collection of closed sets is also closed.
- The union of any finite number of closed sets is also closed.

Using these axioms, another way to define a topological space is as a set together with a collection of closed subsets of Thus the sets in the topology are the closed sets, and their complements in are the open sets.

There are many other equivalent ways to define a topological space: in other words the concepts of neighbourhood, or that of open or closed sets can be reconstructed from other starting points and satisfy the correct axioms.

Another way to define a topological space is by using the Kuratowski closure axioms, which define the closed sets as the fixed points of an operator on the power set of

A net is a generalisation of the concept of sequence. A topology is completely determined if for every net in the set of its accumulation points is specified.

Many topologies can be defined on a set to form a topological space. When every open set of a topology is also open for a topology one says that is *finer* than and is *coarser* than A proof that relies only on the existence of certain open sets will also hold for any finer topology, and similarly a proof that relies only on certain sets not being open applies to any coarser topology. The terms *larger* and *smaller* are sometimes used in place of finer and coarser, respectively. The terms *stronger* and *weaker* are also used in the literature, but with little agreement on the meaning, so one should always be sure of an author's convention when reading.

The collection of all topologies on a given fixed set forms a complete lattice: if is a collection of topologies on then the meet of is the intersection of and the join of is the meet of the collection of all topologies on that contain every member of

A function between topological spaces is called ** continuous ** if for every and every neighbourhood of there is a neighbourhood of such that This relates easily to the usual definition in analysis. Equivalently, is continuous if the inverse image of every open set is open.^{ [11] } This is an attempt to capture the intuition that there are no "jumps" or "separations" in the function. A homeomorphism is a bijection that is continuous and whose inverse is also continuous. Two spaces are called *homeomorphic* if there exists a homeomorphism between them. From the standpoint of topology, homeomorphic spaces are essentially identical.^{ [12] }

In category theory, one of the fundamental categories is **Top**, which denotes the category of topological spaces whose objects are topological spaces and whose morphisms are continuous functions. The attempt to classify the objects of this category (up to homeomorphism) by invariants has motivated areas of research, such as homotopy theory, homology theory, and K-theory.

A given set may have many different topologies. If a set is given a different topology, it is viewed as a different topological space. Any set can be given the discrete topology in which every subset is open. The only convergent sequences or nets in this topology are those that are eventually constant. Also, any set can be given the trivial topology (also called the indiscrete topology), in which only the empty set and the whole space are open. Every sequence and net in this topology converges to every point of the space. This example shows that in general topological spaces, limits of sequences need not be unique. However, often topological spaces must be Hausdorff spaces where limit points are unique.

Metric spaces embody a metric, a precise notion of distance between points.

Every metric space can be given a metric topology, in which the basic open sets are open balls defined by the metric. This is the standard topology on any normed vector space. On a finite-dimensional vector space this topology is the same for all norms.

There are many ways of defining a topology on the set of real numbers. The standard topology on is generated by the open intervals. The set of all open intervals forms a base or basis for the topology, meaning that every open set is a union of some collection of sets from the base. In particular, this means that a set is open if there exists an open interval of non zero radius about every point in the set. More generally, the Euclidean spaces can be given a topology. In the **usual topology** on the basic open sets are the open balls. Similarly, the set of complex numbers, and have a standard topology in which the basic open sets are open balls.

In topology, a proximity space, also called a nearness space, is an axiomatization of the intuitive notion of "nearness" that hold set-to-set, as opposed to the better known point-to-set notion that characterize topological spaces.

The concept was described by FrigyesRiesz (1909) but ignored at the time.In the mathematical field of topology, a uniform space is a topological space with additional structure that is used to define * uniform properties *, such as completeness, uniform continuity and uniform convergence. Uniform spaces generalize metric spaces and topological groups, but the concept is designed to formulate the weakest axioms needed for most proofs in analysis.

In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set `X` into a vector space has a natural vector space structure given by pointwise addition and scalar multiplication. In other scenarios, the function space might inherit a topological or metric structure, hence the name function *space*.

In general topology and analysis, a Cauchy space is a generalization of metric spaces and uniform spaces for which the notion of Cauchy convergence still makes sense. Cauchy spaces were introduced by H. H. Keller in 1968, as an axiomatic tool derived from the idea of a Cauchy filter, in order to study completeness in topological spaces. The category of Cauchy spaces and *Cauchy continuous maps* is Cartesian closed, and contains the category of proximity spaces.

In mathematics, a convergence space, also called a generalized convergence, is a set together with a relation called a *convergence* that satisfies certain properties relating elements of *X* with the family of filters on *X*. Convergence spaces generalize the notions of convergence that are found in point-set topology, including metric convergence and uniform convergence. Every topological space gives rise to a canonical convergence but there are convergences, known as *non-topological convergences*, that do not arise from any topological space.^{ [14] } Examples of convergences that are in general non-topological include convergence in measure and almost everywhere convergence. Many topological properties have generalizations to convergence spaces.

Besides its ability to describe notions of convergence that topologies are unable to, the category of convergence spaces has an important categorical property that the category of topological spaces lacks.

The category of topological spaces is not an exponential category (or equivalently, it is not Cartesian closed) although it is contained in the exponential category of pseudotopological spaces, which is itself a subcategory of the (also exponential) category of convergence spaces.In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category *C* that makes the objects of *C* act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site.

Grothendieck topologies axiomatize the notion of an open cover. Using the notion of covering provided by a Grothendieck topology, it becomes possible to define sheaves on a category and their cohomology. This was first done in algebraic geometry and algebraic number theory by Alexander Grothendieck to define the étale cohomology of a scheme. It has been used to define other cohomology theories since then, such as ℓ-adic cohomology, flat cohomology, and crystalline cohomology. While Grothendieck topologies are most often used to define cohomology theories, they have found other applications as well, such as to John Tate's theory of rigid analytic geometry.

There is a natural way to associate a site to an ordinary topological space, and Grothendieck's theory is loosely regarded as a generalization of classical topology. Under meager point-set hypotheses, namely sobriety, this is completely accurate—it is possible to recover a sober space from its associated site. However simple examples such as the indiscrete topological space show that not all topological spaces can be expressed using Grothendieck topologies. Conversely, there are Grothendieck topologies that do not come from topological spaces.

The term "Grothendieck topology" has changed in meaning. In Artin (1962) it meant what is now called a Grothendieck pretopology, and some authors still use this old meaning. Giraud (1964) modified the definition to use sieves rather than covers. Much of the time this does not make much difference, as each Grothendieck pretopology determines a unique Grothendieck topology, though quite different pretopologies can give the same topology.If is a filter on a set then is a topology on

Many sets of linear operators in functional analysis are endowed with topologies that are defined by specifying when a particular sequence of functions converges to the zero function.

Any local field has a topology native to it, and this can be extended to vector spaces over that field.

Every manifold has a natural topology since it is locally Euclidean. Similarly, every simplex and every simplicial complex inherits a natural topology from .

The Zariski topology is defined algebraically on the spectrum of a ring or an algebraic variety. On or the closed sets of the Zariski topology are the solution sets of systems of polynomial equations.

A linear graph has a natural topology that generalizes many of the geometric aspects of graphs with vertices and edges.

The Sierpiński space is the simplest non-discrete topological space. It has important relations to the theory of computation and semantics.

There exist numerous topologies on any given finite set. Such spaces are called finite topological spaces. Finite spaces are sometimes used to provide examples or counterexamples to conjectures about topological spaces in general.

Any set can be given the cofinite topology in which the open sets are the empty set and the sets whose complement is finite. This is the smallest T_{1} topology on any infinite set.^{[ citation needed ]}

Any set can be given the cocountable topology, in which a set is defined as open if it is either empty or its complement is countable. When the set is uncountable, this topology serves as a counterexample in many situations.

The real line can also be given the lower limit topology. Here, the basic open sets are the half open intervals This topology on is strictly finer than the Euclidean topology defined above; a sequence converges to a point in this topology if and only if it converges from above in the Euclidean topology. This example shows that a set may have many distinct topologies defined on it.

If is an ordinal number, then the set may be endowed with the order topology generated by the intervals and where and are elements of

Outer space of a free group consists of the so-called "marked metric graph structures" of volume 1 on ^{ [16] }

Every subset of a topological space can be given the subspace topology in which the open sets are the intersections of the open sets of the larger space with the subset. For any indexed family of topological spaces, the product can be given the product topology, which is generated by the inverse images of open sets of the factors under the projection mappings. For example, in finite products, a basis for the product topology consists of all products of open sets. For infinite products, there is the additional requirement that in a basic open set, all but finitely many of its projections are the entire space.

A quotient space is defined as follows: if is a topological space and is a set, and if is a surjective function, then the quotient topology on is the collection of subsets of that have open inverse images under In other words, the quotient topology is the finest topology on for which is continuous. A common example of a quotient topology is when an equivalence relation is defined on the topological space The map is then the natural projection onto the set of equivalence classes.

The **Vietoris topology** on the set of all non-empty subsets of a topological space named for Leopold Vietoris, is generated by the following basis: for every -tuple of open sets in we construct a basis set consisting of all subsets of the union of the that have non-empty intersections with each

The **Fell topology** on the set of all non-empty closed subsets of a locally compact Polish space is a variant of the Vietoris topology, and is named after mathematician James Fell. It is generated by the following basis: for every -tuple of open sets in and for every compact set the set of all subsets of that are disjoint from and have nonempty intersections with each is a member of the basis.

Topological spaces can be broadly classified, up to homeomorphism, by their topological properties. A topological property is a property of spaces that is invariant under homeomorphisms. To prove that two spaces are not homeomorphic it is sufficient to find a topological property not shared by them. Examples of such properties include connectedness, compactness, and various separation axioms. For algebraic invariants see algebraic topology.

For any algebraic objects we can introduce the discrete topology, under which the algebraic operations are continuous functions. For any such structure that is not finite, we often have a natural topology compatible with the algebraic operations, in the sense that the algebraic operations are still continuous. This leads to concepts such as topological groups, topological vector spaces, topological rings and local fields.

**Spectral**: A space is*spectral*if and only if it is the prime spectrum of a ring (Hochster theorem).**Specialization preorder**: In a space the*specialization preorder*(or*canonical preorder*) is defined by if and only if where denotes an operator satisfying the Kuratowski closure axioms.

- Complete Heyting algebra – The system of all open sets of a given topological space ordered by inclusion is a complete Heyting algebra.
- Compact space – Type of mathematical space
- Convergence space – Generalization of the notion of convergence that is found in general topology
- Exterior space
- Hausdorff space – Type of topological space
- Hilbert space – Type of topological vector space
- Hemicontinuity
- Linear subspace – In mathematics, vector subspace
- Quasitopological space – a set X equipped with a function that associates to every compact Hausdorff space K a collection of maps K→C satisfying certain natural conditions
- Relatively compact subspace – subset of a topological space whose closure is compact
- Space (mathematics) – Mathematical set with some added structure

- ↑ Schubert 1968 , p. 13
- ↑ Sutherland, W. A. (1975).
*Introduction to metric and topological spaces*. Oxford [England]: Clarendon Press. ISBN 0-19-853155-9. OCLC 1679102. - ↑ Gauss 1827.
- 1 2 Gallier & Xu 2013.
- ↑ J. Stillwell, Mathematics and its history
- ↑ "metric space" .
*Oxford English Dictionary*(Online ed.). Oxford University Press.(Subscription or participating institution membership required.) - ↑ Hausdorff, Felix (1914) [1914]. "Punktmengen in allgemeinen Räumen".
*Grundzüge der Mengenlehre*. Göschens Lehrbücherei/Gruppe I: Reine und Angewandte Mathematik Serie (in German). Leipzig: Von Veit (published 2011). p. 211. ISBN 9783110989854 . Retrieved 20 August 2022.Unter einem m e t r i s c h e n R a u m e verstehen wir eine Menge

*E*, [...]. - ↑ Brown 2006, section 2.1.
- ↑ Brown 2006, section 2.2.
- ↑ Armstrong 1983, definition 2.1.
- ↑ Armstrong 1983, theorem 2.6.
- ↑ Munkres, James R (2015).
*Topology*. Pearson. pp. 317–319. ISBN 978-93-325-4953-1. - ↑ W. J. Thron,
*Frederic Riesz' contributions to the foundations of general topology*, in C.E. Aull and R. Lowen (eds.),*Handbook of the History of General Topology*, Volume 1, 21-29, Kluwer 1997. - ↑ Dolecki & Mynard 2016, pp. 55–77.
- ↑ Dolecki 2009, pp. 1–51
- ↑ Culler, Marc; Vogtmann, Karen (1986). "Moduli of graphs and automorphisms of free groups" (PDF).
*Inventiones Mathematicae*.**84**(1): 91–119. Bibcode:1986InMat..84...91C. doi:10.1007/BF01388734. S2CID 122869546.

- Armstrong, M. A. (1983) [1979].
*Basic Topology*. Undergraduate Texts in Mathematics. Springer. ISBN 0-387-90839-0. - Bredon, Glen E.,
*Topology and Geometry*(Graduate Texts in Mathematics), Springer; 1st edition (October 17, 1997). ISBN 0-387-97926-3. - Bourbaki, Nicolas;
*Elements of Mathematics: General Topology*, Addison-Wesley (1966). - Brown, Ronald (2006).
*Topology and Groupoids*. Booksurge. ISBN 1-4196-2722-8. (3rd edition of differently titled books) - Čech, Eduard;
*Point Sets*, Academic Press (1969). - Fulton, William,
*Algebraic Topology*, (Graduate Texts in Mathematics), Springer; 1st edition (September 5, 1997). ISBN 0-387-94327-7. - Gallier, Jean; Xu, Dianna (2013).
*A Guide to the Classification Theorem for Compact Surfaces*. Springer. - Gauss, Carl Friedrich (1827).
*General investigations of curved surfaces*. - Lipschutz, Seymour;
*Schaum's Outline of General Topology*, McGraw-Hill; 1st edition (June 1, 1968). ISBN 0-07-037988-2. - Munkres, James;
*Topology*, Prentice Hall; 2nd edition (December 28, 1999). ISBN 0-13-181629-2. - Runde, Volker;
*A Taste of Topology (Universitext)*, Springer; 1st edition (July 6, 2005). ISBN 0-387-25790-X. - Schubert, Horst (1968),
*Topology*, Macdonald Technical & Scientific, ISBN 0-356-02077-0 - Steen, Lynn A. and Seebach, J. Arthur Jr.;
*Counterexamples in Topology*, Holt, Rinehart and Winston (1970). ISBN 0-03-079485-4. - Vaidyanathaswamy, R. (1960).
*Set Topology*. Chelsea Publishing Co. ISBN 0486404560. - Willard, Stephen (2004).
*General Topology*. Dover Publications. ISBN 0-486-43479-6.

Wikiquote has quotations related to ** Topological space **.

- "Topological space",
*Encyclopedia of Mathematics*, EMS Press, 2001 [1994]

In mathematics, more specifically in functional analysis, a **Banach space** is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

In mathematics, a **continuous function** is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as *discontinuities*. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A **discontinuous function** is a function that is *not continuous*. Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity.

In mathematics, a **normed vector space** or **normed space** is a vector space over the real or complex numbers on which a norm is defined. A norm is a generalization of the intuitive notion of "length" in the physical world. If is a vector space over , where is a field equal to or to , then a norm on is a map , typically denoted by , satisfying the following four axioms:

- Non-negativity: for every ,.
- Positive definiteness: for every , if and only if is the zero vector.
- Absolute homogeneity: for every and ,
- Triangle inequality: for every and ,

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

In mathematics, an **open set** is a generalization of an open interval in the real line.

In topology, the **closure** of a subset S of points in a topological space consists of all points in S together with all limit points of S. The closure of S may equivalently be defined as the union of S and its boundary, and also as the intersection of all closed sets containing S. Intuitively, the closure can be thought of as all the points that are either in S or "very near" S. A point which is in the closure of S is a point of closure of S. The notion of closure is in many ways dual to the notion of interior.

In mathematics, **topological groups** are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

In mathematics, a **topological vector space** is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a *vector topology* and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

In geometry, topology, and related branches of mathematics, a **closed set** is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation. This should not be confused with a closed manifold.

In topology, a **discrete space** is a particularly simple example of a topological space or similar structure, one in which the points form a *discontinuous sequence*, meaning they are *isolated* from each other in a certain sense. The discrete topology is the finest topology that can be given on a set. Every subset is open in the discrete topology so that in particular, every singleton subset is an open set in the discrete topology.

In mathematics, a **base** (or **basis**; pl.: **bases**) for the topology τ of a topological space (*X*, τ) is a family of open subsets of *X* such that every open set of the topology is equal to the union of some sub-family of . For example, the set of all open intervals in the real number line is a basis for the Euclidean topology on because every open interval is an open set, and also every open subset of can be written as a union of some family of open intervals.

In mathematics, **general topology** is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology.

In functional analysis and related areas of mathematics, **Fréchet spaces**, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically *not* Banach spaces.

In topology, a **subbase** for a topological space with topology is a subcollection of that generates in the sense that is the smallest topology containing as open sets. A slightly different definition is used by some authors, and there are other useful equivalent formulations of the definition; these are discussed below.

In topology, an **Alexandrov topology** is a topology in which the intersection of every family of open sets is open. It is an axiom of topology that the intersection of every *finite* family of open sets is open; in Alexandrov topologies the finite restriction is dropped.

In topology and related areas of mathematics, a **subspace** of a topological space *X* is a subset *S* of *X* which is equipped with a topology induced from that of *X* called the **subspace topology**.

In topology and related fields of mathematics, a **sequential space** is a topological space whose topology can be completely characterized by its convergent/divergent sequences. They can be thought of as spaces that satisfy a very weak axiom of countability, and all first-countable spaces are sequential.

In the field of topology, a **Fréchet–Urysohn space** is a topological space with the property that for every subset the closure of in is identical to the *sequential* closure of in Fréchet–Urysohn spaces are a special type of sequential space.

In functional analysis and related areas of mathematics, a **complete topological vector space** is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by *Cauchy nets* or *Cauchy filters*, which are generalizations of *Cauchy sequences*, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for *all* TVSs, including those that are not metrizable or Hausdorff.

In functional analysis and related areas of mathematics, a **metrizable** topological vector space (TVS) is a TVS whose topology is induced by a metric. An **LM-space** is an inductive limit of a sequence of locally convex metrizable TVS.

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.