In topology and related branches of mathematics, the Kuratowski closure axioms are a set of axioms that can be used to define a topological structure on a set. They are equivalent to the more commonly used open set definition. They were first formalized by Kazimierz Kuratowski, [1] and the idea was further studied by mathematicians such as Wacław Sierpiński and António Monteiro, [2] among others.
A similar set of axioms can be used to define a topological structure using only the dual notion of interior operator. [3]
Let be an arbitrary set and its power set. A Kuratowski closure operator is a unary operation with the following properties:
[K1] It preserves the empty set: ;[K2] It is extensive: for all , ;
[K3] It is idempotent: for all , ;
[K4] It preserves/ distributes over binary unions: for all , .
A consequence of preserving binary unions is the following condition: [4]
[K4'] It is monotone : .
In fact if we rewrite the equality in [K4] as an inclusion, giving the weaker axiom [K4''] (subadditivity):
[K4''] It is subadditive: for all , ,
then it is easy to see that axioms [K4'] and [K4''] together are equivalent to [K4] (see the next-to-last paragraph of Proof 2 below).
Kuratowski (1966) includes a fifth (optional) axiom requiring that singleton sets should be stable under closure: for all , . He refers to topological spaces which satisfy all five axioms as T1-spaces in contrast to the more general spaces which only satisfy the four listed axioms. Indeed, these spaces correspond exactly to the topological T1-spaces via the usual correspondence (see below). [5]
If requirement [K3] is omitted, then the axioms define a Čech closure operator. [6] If [K1] is omitted instead, then an operator satisfying [K2], [K3] and [K4'] is said to be a Moore closure operator. [7] A pair is called Kuratowski, Čech or Moore closure space depending on the axioms satisfied by .
The four Kuratowski closure axioms can be replaced by a single condition, given by Pervin: [8]
[P] For all , .
Axioms [K1]–[K4] can be derived as a consequence of this requirement:
Alternatively, Monteiro (1945) had proposed a weaker axiom that only entails [K2]–[K4]: [9]
[M] For all , .
Requirement [K1] is independent of [M] : indeed, if , the operator defined by the constant assignment satisfies [M] but does not preserve the empty set, since . Notice that, by definition, any operator satisfying [M] is a Moore closure operator.
A more symmetric alternative to [M] was also proven by M. O. Botelho and M. H. Teixeira to imply axioms [K2]–[K4]: [2]
[BT] For all , .
A dual notion to Kuratowski closure operators is that of Kuratowski interior operator, which is a map satisfying the following similar requirements: [3]
[I1] It preserves the total space: ;[I2] It is intensive: for all , ;
[I3] It is idempotent: for all , ;
[I4] It preserves binary intersections: for all , .
For these operators, one can reach conclusions that are completely analogous to what was inferred for Kuratowski closures. For example, all Kuratowski interior operators are isotonic, i.e. they satisfy [K4'], and because of intensivity [I2], it is possible to weaken the equality in [I3] to a simple inclusion.
The duality between Kuratowski closures and interiors is provided by the natural complement operator on , the map sending . This map is an orthocomplementation on the power set lattice, meaning it satisfies De Morgan's laws: if is an arbitrary set of indices and ,
By employing these laws, together with the defining properties of , one can show that any Kuratowski interior induces a Kuratowski closure (and vice versa), via the defining relation (and ). Every result obtained concerning may be converted into a result concerning by employing these relations in conjunction with the properties of the orthocomplementation .
Pervin (1964) further provides analogous axioms for Kuratowski exterior operators [3] and Kuratowski boundary operators, [10] which also induce Kuratowski closures via the relations and .
Notice that axioms [K1]–[K4] may be adapted to define an abstract unary operation on a general bounded lattice , by formally substituting set-theoretic inclusion with the partial order associated to the lattice, set-theoretic union with the join operation, and set-theoretic intersections with the meet operation; similarly for axioms [I1]–[I4]. If the lattice is orthocomplemented, these two abstract operations induce one another in the usual way. Abstract closure or interior operators can be used to define a generalized topology on the lattice.
Since neither unions nor the empty set appear in the requirement for a Moore closure operator, the definition may be adapted to define an abstract unary operator on an arbitrary poset .
A closure operator naturally induces a topology as follows. Let be an arbitrary set. We shall say that a subset is closed with respect to a Kuratowski closure operator if and only if it is a fixed point of said operator, or in other words it is stable under, i.e. . The claim is that the family of all subsets of the total space that are complements of closed sets satisfies the three usual requirements for a topology, or equivalently, the family of all closed sets satisfies the following:
[T1] It is a bounded sublattice of , i.e. ;[T2] It is complete under arbitrary intersections, i.e. if is an arbitrary set of indices and , then ;
[T3] It is complete under finite unions, i.e. if is a finite set of indices and , then .
Notice that, by idempotency [K3], one may succinctly write .
Proof 1. |
---|
[T1] By extensivity [K2], and since closure maps the power set of into itself (that is, the image of any subset is a subset of ), we have . Thus . The preservation of the empty set [K1] readily implies . [T2] Next, let be an arbitrary set of indices and let be closed for every . By extensivity [K2], . Also, by isotonicity [K4'], if for all indices , then for all , which implies . Therefore, , meaning . [T3] Finally, let be a finite set of indices and let be closed for every . From the preservation of binary unions [K4], and using induction on the number of subsets of which we take the union, we have . Thus, . |
Conversely, given a family satisfying axioms [T1]–[T3], it is possible to construct a Kuratowski closure operator in the following way: if and is the inclusion upset of , then
defines a Kuratowski closure operator on .
Proof 2. |
---|
[K1] Since , reduces to the intersection of all sets in the family ; but by axiom [T1], so the intersection collapses to the null set and [K1] follows. [K2] By definition of , we have that for all , and thus must be contained in the intersection of all such sets. Hence follows extensivity [K2]. [K3] Notice that, for all , the family contains itself as a minimal element w.r.t. inclusion. Hence , which is idempotence [K3]. [K4'] Let : then , and thus . Since the latter family may contain more elements than the former, we find , which is isotonicity [K4']. Notice that isotonicity implies and , which together imply . [K4] Finally, fix . Axiom [T2] implies ; furthermore, axiom [T2] implies that . By extensivity [K2] one has and , so that . But , so that all in all . Since then is a minimal element of w.r.t. inclusion, we find . Point 4. ensures additivity [K4]. |
In fact, these two complementary constructions are inverse to one another: if is the collection of all Kuratowski closure operators on , and is the collection of all families consisting of complements of all sets in a topology, i.e. the collection of all families satisfying [T1]–[T3], then such that is a bijection, whose inverse is given by the assignment .
Proof 3. |
---|
First we prove that , the identity operator on . For a given Kuratowski closure , define ; then if its primed closure is the intersection of all -stable sets that contain . Its non-primed closure satisfies this description: by extensivity [K2] we have , and by idempotence [K3] we have , and thus . Now, let such that : by isotonicity [K4'] we have , and since we conclude that . Hence is the minimal element of w.r.t. inclusion, implying . Now we prove that . If and is the family of all sets that are stable under , the result follows if both and . Let : hence . Since is the intersection of an arbitrary subfamily of , and the latter is complete under arbitrary intersections by [T2], then . Conversely, if , then is the minimal superset of that is contained in . But that is trivially itself, implying . |
We observe that one may also extend the bijection to the collection of all Čech closure operators, which strictly contains ; this extension is also surjective, which signifies that all Čech closure operators on also induce a topology on . [11] However, this means that is no longer a bijection.
This section needs expansion. You can help by adding to it. (August 2019) |
A pair of Kuratowski closures such that for all induce topologies such that , and vice versa. In other words, dominates if and only if the topology induced by the latter is a refinement of the topology induced by the former, or equivalently . [13] For example, clearly dominates (the latter just being the identity on ). Since the same conclusion can be reached substituting with the family containing the complements of all its members, if is endowed with the partial order for all and is endowed with the refinement order, then we may conclude that is an antitonic mapping between posets.
In any induced topology (relative to the subset A) the closed sets induce a new closure operator that is just the original closure operator restricted to A: , for all . [14]
A function is continuous at a point iff , and it is continuous everywhere iff
for all subsets . [15] The mapping is a closed map iff the reverse inclusion holds, [16] and it is a homeomorphism iff it is both continuous and closed, i.e. iff equality holds. [17]
Let be a Kuratowski closure space. Then
A point is close to a subset if This can be used to define a proximity relation on the points and subsets of a set. [21]
Two sets are separated iff . The space is connected iff it cannot be written as the union of two separated subsets. [22]
In mathematics, any vector space has a corresponding dual vector space consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants.
In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.
In commutative algebra, the prime spectrum of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .
In topology, the closure of a subset S of points in a topological space consists of all points in S together with all limit points of S. The closure of S may equivalently be defined as the union of S and its boundary, and also as the intersection of all closed sets containing S. Intuitively, the closure can be thought of as all the points that are either in S or "very near" S. A point which is in the closure of S is a point of closure of S. The notion of closure is in many ways dual to the notion of interior.
In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.
In mathematics, specifically in topology, the interior of a subset S of a topological space X is the union of all subsets of S that are open in X. A point that is in the interior of S is an interior point of S.
In topology and mathematics in general, the boundary of a subset S of a topological space X is the set of points in the closure of S not belonging to the interior of S. An element of the boundary of S is called a boundary point of S. The term boundary operation refers to finding or taking the boundary of a set. Notations used for boundary of a set S include and . Some authors use the term frontier instead of boundary in an attempt to avoid confusion with a different definition used in algebraic topology and the theory of manifolds. Despite widespread acceptance of the meaning of the terms boundary and frontier, they have sometimes been used to refer to other sets. For example, Metric Spaces by E. T. Copson uses the term boundary to refer to Hausdorff's border, which is defined as the intersection of a set with its boundary. Hausdorff also introduced the term residue, which is defined as the intersection of a set with the closure of the border of its complement.
In topology, a subbase for a topological space with topology is a subcollection of that generates in the sense that is the smallest topology containing as open sets. A slightly different definition is used by some authors, and there are other useful equivalent formulations of the definition; these are discussed below.
In mathematics, a closure operator on a set S is a function from the power set of S to itself that satisfies the following conditions for all sets
In mathematics, a field of sets is a mathematical structure consisting of a pair consisting of a set and a family of subsets of called an algebra over that contains the empty set as an element, and is closed under the operations of taking complements in finite unions, and finite intersections.
In topology, a proximity space, also called a nearness space, is an axiomatization of the intuitive notion of "nearness" that hold set-to-set, as opposed to the better known point-to-set notion that characterize topological spaces.
In mathematics, more specifically in point-set topology, the derived set of a subset of a topological space is the set of all limit points of It is usually denoted by
In the mathematical field of topology, a topological space is usually defined by declaring its open sets. However, this is not necessary, as there are many equivalent axiomatic foundations, each leading to exactly the same concept. For instance, a topological space determines a class of closed sets, of closure and interior operators, and of convergence of various types of objects. Each of these can instead be taken as the primary class of objects, with all of the others directly determined from that new starting point. For example, in Kazimierz Kuratowski's well-known textbook on point-set topology, a topological space is defined as a set together with a certain type of "closure operator," and all other concepts are derived therefrom. Likewise, the neighborhood-based axioms can be retraced to Felix Hausdorff's original definition of a topological space in Grundzüge der Mengenlehre.
In topology, a preclosure operator or Čech closure operator is a map between subsets of a set, similar to a topological closure operator, except that it is not required to be idempotent. That is, a preclosure operator obeys only three of the four Kuratowski closure axioms.
In mathematics, a filter on a set is a family of subsets such that:
In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it. Formally, is dense in if the smallest closed subset of containing is itself.
Filters in topology, a subfield of mathematics, can be used to study topological spaces and define all basic topological notions such as convergence, continuity, compactness, and more. Filters, which are special families of subsets of some given set, also provide a common framework for defining various types of limits of functions such as limits from the left/right, to infinity, to a point or a set, and many others. Special types of filters called ultrafilters have many useful technical properties and they may often be used in place of arbitrary filters.
In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.
In mathematics, a convergence space, also called a generalized convergence, is a set together with a relation called a convergence that satisfies certain properties relating elements of X with the family of filters on X. Convergence spaces generalize the notions of convergence that are found in point-set topology, including metric convergence and uniform convergence. Every topological space gives rise to a canonical convergence but there are convergences, known as non-topological convergences, that do not arise from any topological space. Examples of convergences that are in general non-topological include convergence in measure and almost everywhere convergence. Many topological properties have generalizations to convergence spaces.
In the mathematical field of set theory, an ultrafilter on a set is a maximal filter on the set In other words, it is a collection of subsets of that satisfies the definition of a filter on and that is maximal with respect to inclusion, in the sense that there does not exist a strictly larger collection of subsets of that is also a filter. Equivalently, an ultrafilter on the set can also be characterized as a filter on with the property that for every subset of either or its complement belongs to the ultrafilter.