![]() First edition | |
Author | Jean Gallier, Dianna Xu |
---|---|
Language | English |
Series | Geometry and Computing |
Genre | Mathematics |
Publisher | Springer-Verlag |
Publication date | 2013 |
ISBN | 978-3-642-34363-6 |
A Guide to the Classification Theorem for Compact Surfaces is a textbook in topology, on the classification of two-dimensional surfaces. It was written by Jean Gallier and Dianna Xu, and published in 2013 by Springer-Verlag as volume 9 of their Geometry and Computing series ( doi : 10.1007/978-3-642-34364-3, ISBN 978-3-642-34363-6). The Basic Library List Committee of the Mathematical Association of America has recommended its inclusion in undergraduate mathematics libraries. [1]
The classification of surfaces (more formally, compact two-dimensional manifolds without boundary) can be stated very simply, as it depends only on the Euler characteristic and orientability of the surface. An orientable surface of this type must be topologically equivalent (homeomorphic) to a sphere, torus, or more general handlebody, classified by its number of handles. A non-orientable surface must be equivalent to a projective plane, Klein bottle, or more general surface characterized by an analogous number, its number of cross-caps. For compact surfaces with boundary, the only extra information needed is the number of boundary components. [1] This result is presented informally at the start of the book, as the first of its six chapters. The rest of the book presents a more rigorous formulation of the problem, a presentation of the topological tools needed to prove the result, and a formal proof of the classification. [2] [3]
Other topics in topology discussed as part of this presentation include simplicial complexes, fundamental groups, simplicial homology and singular homology, and the Poincaré conjecture. Appendices include additional material on embeddings and self-intersecting mappings of surfaces into three-dimensional space such as the Roman surface, the structure of finitely generated abelian groups, general topology, the history of the classification theorem, and the Hauptvermutung (the theorem that every surface can be triangulated). [2]
This is a textbook aimed at the level of advanced undergraduates or beginning graduate students in mathematics, [2] perhaps after having already completed a first course in topology. Readers of the book are expected to already be familiar with general topology, linear algebra, and group theory. [1] However, as a textbook, it lacks exercises, and reviewer Bill Wood suggests its use for a student project rather than for a formal course. [1]
Many other graduate algebraic topology textbooks include coverage of the same topic. [4] However, by focusing on a single topic, the classification theorem, the book is able to prove the result rigorously while remaining at a lower overall level, [4] [5] provide a greater amount of intuition and history, [4] and serve as "a motivating tour of the discipline’s fundamental techniques". [1]
Reviewer Clara Löh complains that parts of the book are redundant, and in particular that the classification theorem can be proven either with the fundamental group or with homology (not needing both), that on the other hand several important tools from topology including the Jordan–Schoenflies theorem are not proven, and that several related classification results are omitted. [3] Nevertheless, reviewer D. V. Feldman highly recommends the book, [5] Wood writes "This is a book I wish I’d had in graduate school", [1] and reviewer Werner Kleinert calls it "an introductory text of remarkable didactic value". [2]
In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the geometric properties of smooth manifolds, including notions of size, distance, and rigid shape. By comparison differential topology is concerned with coarser properties, such as the number of holes in a manifold, its homotopy type, or the structure of its diffeomorphism group. Because many of these coarser properties may be captured algebraically, differential topology has strong links to algebraic topology.
In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .
In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space.
Topology is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself.
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.
In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages. The most direct usage of the term is to take the homology of a chain complex, resulting in a sequence of abelian groups called homology groups. This operation, in turn, allows one to associate various named homologies or homology theories to various other types of mathematical objects. Lastly, since there are many homology theories for topological spaces that produce the same answer, one also often speaks of the homology of a topological space. There is also a related notion of the cohomology of a cochain complex, giving rise to various cohomology theories, in addition to the notion of the cohomology of a topological space.
In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by .
Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object.
In mathematics, the Poincaré duality theorem, named after Henri Poincaré, is a basic result on the structure of the homology and cohomology groups of manifolds. It states that if M is an n-dimensional oriented closed manifold (compact and without boundary), then the kth cohomology group of M is isomorphic to the (n − k)th homology group of M, for all integers k
In algebraic topology, a homology sphere is an n-manifold X having the homology groups of an n-sphere, for some integer . That is,
In mathematics, geometric topology is the study of manifolds and maps between them, particularly embeddings of one manifold into another.
In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. This can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory.
In mathematics, a 3-manifold is a topological space that locally looks like a three-dimensional Euclidean space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small and close enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below.
In mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. There exist some topological 4-manifolds which admit no smooth structure, and even if there exists a smooth structure, it need not be unique.
In mathematics, triangulation describes the replacement of topological spaces with simplicial complexes by the choice of an appropriate homeomorphism. A space that admits such a homeomorphism is called a triangulable space. Triangulations can also be used to define a piecewise linear structure for a space, if one exists. Triangulation has various applications both in and outside of mathematics, for instance in algebraic topology, in complex analysis, and in modeling.
In low-dimensional topology, a branch of mathematics, the E8 manifold is the unique compact, simply connected topological 4-manifold with intersection form the E8 lattice.
In mathematics, specifically geometry and topology, the classification of manifolds is a basic question, about which much is known, and many open questions remain.
Euler's Gem: The Polyhedron Formula and the Birth of Topology is a book on the formula for the Euler characteristic of convex polyhedra and its connections to the history of topology. It was written by David Richeson and published in 2008 by the Princeton University Press, with a paperback edition in 2012. It won the 2010 Euler Book Prize of the Mathematical Association of America.
{{citation}}
: CS1 maint: DOI inactive as of February 2025 (link)