Simplicial homology

Last updated

In algebraic topology, simplicial homology is the sequence of homology groups of a simplicial complex. It formalizes the idea of the number of holes of a given dimension in the complex. This generalizes the number of connected components (the case of dimension 0).

Contents

Simplicial homology arose as a way to study topological spaces whose building blocks are n-simplices, the n-dimensional analogs of triangles. This includes a point (0-simplex), a line segment (1-simplex), a triangle (2-simplex) and a tetrahedron (3-simplex). By definition, such a space is homeomorphic to a simplicial complex (more precisely, the geometric realization of an abstract simplicial complex). Such a homeomorphism is referred to as a triangulation of the given space. Many topological spaces of interest can be triangulated, including every smooth manifold (Cairns and Whitehead). [1] :sec.5.3.2

Simplicial homology is defined by a simple recipe for any abstract simplicial complex. It is a remarkable fact that simplicial homology only depends on the associated topological space. [2] :sec.8.6 As a result, it gives a computable way to distinguish one space from another.

Definitions

The boundary of a boundary of a 2-simplex (left) and the boundary of a 1-chain (right) are taken. Both are 0, being sums in which both the positive and negative of a 0-simplex occur once. The boundary of a boundary is always 0. A nontrivial cycle is something that closes up like the boundary of a simplex, in that its boundary sums to 0, but which isn't actually the boundary of a simplex or chain. Because trivial 1-cycles are equivalent to 0 in
H
1
{\displaystyle H_{1}}
, the 1-cycle at right-middle is homologous to its sum with the boundary of the 2-simplex at left. Simplicial homology - exactness of boundary maps.svg
The boundary of a boundary of a 2-simplex (left) and the boundary of a 1-chain (right) are taken. Both are 0, being sums in which both the positive and negative of a 0-simplex occur once. The boundary of a boundary is always 0. A nontrivial cycle is something that closes up like the boundary of a simplex, in that its boundary sums to 0, but which isn't actually the boundary of a simplex or chain. Because trivial 1-cycles are equivalent to 0 in , the 1-cycle at right-middle is homologous to its sum with the boundary of the 2-simplex at left.

Orientations

A key concept in defining simplicial homology is the notion of an orientation of a simplex. By definition, an orientation of a k-simplex is given by an ordering of the vertices, written as (v0,...,vk), with the rule that two orderings define the same orientation if and only if they differ by an even permutation. Thus every simplex has exactly two orientations, and switching the order of two vertices changes an orientation to the opposite orientation. For example, choosing an orientation of a 1-simplex amounts to choosing one of the two possible directions, and choosing an orientation of a 2-simplex amounts to choosing what "counterclockwise" should mean.

Chains

Let S be a simplicial complex. A simplicial k-chain is a finite formal sum

where each ci is an integer and σi is an oriented k-simplex. In this definition, we declare that each oriented simplex is equal to the negative of the simplex with the opposite orientation. For example,

The group of k-chains on S is written Ck. This is a free abelian group which has a basis in one-to-one correspondence with the set of k-simplices in S. To define a basis explicitly, one has to choose an orientation of each simplex. One standard way to do this is to choose an ordering of all the vertices and give each simplex the orientation corresponding to the induced ordering of its vertices.

Boundaries and cycles

Let σ = (v0,...,vk) be an oriented k-simplex, viewed as a basis element of Ck. The boundary operator

is the homomorphism defined by:

where the oriented simplex

is the ith face of σ, obtained by deleting its ith vertex.

In Ck, elements of the subgroup

are referred to as cycles, and the subgroup

is said to consist of boundaries.

Boundaries of boundaries

Because , where is the second face removed, . In geometric terms, this says that the boundary of a boundary of anything has no boundary. Equivalently, the abelian groups

form a chain complex. Another equivalent statement is that Bk is contained in Zk.

As an example, consider a tetrahedron with vertices oriented as w,x,y,z. By definition, its boundary is given by: xyz - wyz + wxz - wxy. The boundary of the boundary is given by: (yz-xz+xy)-(yz-wz+wy)+(xz-wz+wx)-(xy-wy+wx) = 0.

A simplicial complex with 2 1-holes Triangles for simplical homology.jpg
A simplicial complex with 2 1-holes

Homology groups

The kth homology group Hk of S is defined to be the quotient abelian group

It follows that the homology group Hk(S) is nonzero exactly when there are k-cycles on S which are not boundaries. In a sense, this means that there are k-dimensional holes in the complex. For example, consider the complex S obtained by gluing two triangles (with no interior) along one edge, shown in the image. The edges of each triangle can be oriented so as to form a cycle. These two cycles are by construction not boundaries (since every 2-chain is zero). One can compute that the homology group H1(S) is isomorphic to Z2, with a basis given by the two cycles mentioned. This makes precise the informal idea that S has two "1-dimensional holes".

Holes can be of different dimensions. The rank of the kth homology group, the number

is called the kth Betti number of S. It gives a measure of the number of k-dimensional holes in S.

Example

Homology groups of a triangle

Let S be a triangle (without its interior), viewed as a simplicial complex. Thus S has three vertices, which we call v0, v1, v2, and three edges, which are 1-dimensional simplices. To compute the homology groups of S, we start by describing the chain groups Ck:

The boundary homomorphism: C1C0 is given by:

Since C−1 = 0, every 0-chain is a cycle (i.e. Z0 = C0); moreover, the group B0 of the 0-boundaries is generated by the three elements on the right of these equations, creating a two-dimensional subgroup of C0. So the 0th homology groupH0(S) = Z0/B0 is isomorphic to Z, with a basis given (for example) by the image of the 0-cycle (v0). Indeed, all three vertices become equal in the quotient group; this expresses the fact that S is connected.

Next, the group of 1-cycles is the kernel of the homomorphism ∂ above, which is isomorphic to Z, with a basis given (for example) by (v0,v1) − (v0,v2) + (v1,v2). (A picture reveals that this 1-cycle goes around the triangle in one of the two possible directions.) Since C2 = 0, the group of 1-boundaries is zero, and so the 1st homology groupH1(S) is isomorphic to Z/0 ≅ Z. This makes precise the idea that the triangle has one 1-dimensional hole.

Next, since by definition there are no 2-cycles, C2 = 0 (the trivial group). Therefore the 2nd homology groupH2(S) is zero. The same is true for Hi(S) for all i not equal to 0 or 1. Therefore, the homological connectivity of the triangle is 0 (it is the largest k for which the reduced homology groups up to k are trivial).

Homology groups of higher-dimensional simplices

Let S be a tetrahedron (without its interior), viewed as a simplicial complex. Thus S has four 0-dimensional vertices, six 1-dimensional edges, and four 2-dimensional faces. The construction of the homology groups of a tetrahedron is described in detail here. [3] It turns out that H0(S) is isomorphic to Z, H2(S) is isomorphic to Z too, and all other groups are trivial. Therefore, the homological connectivity of the tetrahedron is 0.

If the tetrahedron contains its interior, then H2(S) is trivial too.

In general, if S is a d-dimensional simplex, the following holds:

Simplicial maps

Let S and T be simplicial complexes. A simplicial mapf from S to T is a function from the vertex set of S to the vertex set of T such that the image of each simplex in S (viewed as a set of vertices) is a simplex in T. A simplicial map f: ST determines a homomorphism of homology groups Hk(S) → Hk(T) for each integer k. This is the homomorphism associated to a chain map from the chain complex of S to the chain complex of T. Explicitly, this chain map is given on k-chains by

if f(v0), ..., f(vk) are all distinct, and otherwise f((v0, ..., vk)) = 0.

This construction makes simplicial homology a functor from simplicial complexes to abelian groups. This is essential to applications of the theory, including the Brouwer fixed point theorem and the topological invariance of simplicial homology.

Singular homology is a related theory that is better adapted to theory rather than computation. Singular homology is defined for all topological spaces and depends only on the topology, not any triangulation; and it agrees with simplicial homology for spaces which can be triangulated. [4] :thm.2.27 Nonetheless, because it is possible to compute the simplicial homology of a simplicial complex automatically and efficiently, simplicial homology has become important for application to real-life situations, such as image analysis, medical imaging, and data analysis in general.

Another related theory is Cellular homology .

Applications

A standard scenario in many computer applications is a collection of points (measurements, dark pixels in a bit map, etc.) in which one wishes to find a topological feature. Homology can serve as a qualitative tool to search for such a feature, since it is readily computable from combinatorial data such as a simplicial complex. However, the data points have to first be triangulated, meaning one replaces the data with a simplicial complex approximation. Computation of persistent homology [5] involves analysis of homology at different resolutions, registering homology classes (holes) that persist as the resolution is changed. Such features can be used to detect structures of molecules, tumors in X-rays, and cluster structures in complex data.

More generally, simplicial homology plays a central role in topological data analysis, a technique in the field of data mining.

Implementations

See also

Related Research Articles

<span class="mw-page-title-main">Simplex</span> Multi-dimensional generalization of triangle

In geometry, a simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example,

In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is included in the kernel of the next. Associated to a chain complex is its homology, which describes how the images are included in the kernels.

In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry.

In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by .

In algebraic topology, a k-chain is a formal linear combination of the k-cells in a cell complex. In simplicial complexes, k-chains are combinations of k-simplices, but not necessarily connected. Chains are used in homology; the elements of a homology group are equivalence classes of chains.

<span class="mw-page-title-main">Simplicial complex</span> Mathematical set composed of points, line segments, triangles, and their n-dimensional counterparts

In mathematics, a simplicial complex is a set composed of points, line segments, triangles, and their n-dimensional counterparts. Simplicial complexes should not be confused with the more abstract notion of a simplicial set appearing in modern simplicial homotopy theory. The purely combinatorial counterpart to a simplicial complex is an abstract simplicial complex. To distinguish a simplicial complex from an abstract simplicial complex, the former is often called a geometric simplicial complex.

In the mathematical disciplines of topology and geometry, an orbifold is a generalization of a manifold. Roughly speaking, an orbifold is a topological space which is locally a finite group quotient of a Euclidean space.

In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups Intuitively, singular homology counts, for each dimension n, the n-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions.

<span class="mw-page-title-main">Barycentric subdivision</span>

In mathematics, the barycentric subdivision is a standard way to subdivide a given simplex into smaller ones. Its extension on simplicial complexes is a canonical method to refine them. Therefore, the barycentric subdivision is an important tool in algebraic topology.

In algebraic topology, a homology sphere is an n-manifold X having the homology groups of an n-sphere, for some integer . That is,

<span class="mw-page-title-main">Abstract simplicial complex</span> Mathematical object

In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely combinatorial description of the geometric notion of a simplicial complex. For example, in a 2-dimensional simplicial complex, the sets in the family are the triangles, their edges, and their vertices.

In mathematics, real projective space, denoted or is the topological space of lines passing through the origin 0 in the real space It is a compact, smooth manifold of dimension n, and is a special case of a Grassmannian space.

In mathematics, a simplicial set is an object composed of simplices in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and categories. Formally, a simplicial set may be defined as a contravariant functor from the simplex category to the category of sets. Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber.

<span class="mw-page-title-main">Triangulation (topology)</span>

In mathematics, triangulation describes the replacement of topological spaces by piecewise linear spaces, i.e. the choice of a homeomorphism in a suitable simplicial complex. Spaces being homeomorphic to a simplicial complex are called triangulable. Triangulation has various uses in different branches of mathematics, for instance in algebraic topology, in complex analysis or in modeling.

<span class="mw-page-title-main">Clique complex</span> Abstract simplicial complex describing a graphs cliques

Clique complexes, independence complexes, flag complexes, Whitney complexes and conformal hypergraphs are closely related mathematical objects in graph theory and geometric topology that each describe the cliques of an undirected graph.

A simplicial map is a function between two simplicial complexes, with the property that the images of the vertices of a simplex always span a simplex. Simplicial maps can be used to approximate continuous functions between topological spaces that can be triangulated; this is formalized by the simplicial approximation theorem.

In mathematics, the free factor complex is a free group counterpart of the notion of the curve complex of a finite type surface. The free factor complex was originally introduced in a 1998 paper of Allen Hatcher and Karen Vogtmann. Like the curve complex, the free factor complex is known to be Gromov-hyperbolic. The free factor complex plays a significant role in the study of large-scale geometry of .

Discrete calculus or the calculus of discrete functions, is the mathematical study of incremental change, in the same way that geometry is the study of shape and algebra is the study of generalizations of arithmetic operations. The word calculus is a Latin word, meaning originally "small pebble"; as such pebbles were used for calculation, the meaning of the word has evolved and today usually means a method of computation. Meanwhile, calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the study of continuous change.

In algebraic topology and graph theory, graph homology describes the homology groups of a graph, where the graph is considered as a topological space. It formalizes the idea of the number of "holes" in the graph. It is a special case of a simplicial homology, as a graph is a special case of a simplicial complex. Since a finite graph is a 1-complex, the only non-trivial homology groups are the 0-th group and the 1-th group.

<span class="mw-page-title-main">Simplex tree</span> Topological data

In topological data analysis, a simplex tree is a type of trie used to represent efficiently any general simplicial complex. Through its nodes, this data structure notably explicitly represents all the simplices. Its flexible structure allows implementation of many basic operations useful to computing persistent homology. This data structure was invented by Jean-Daniel Boissonnat and Clément Maria in 2014, in the article The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes. This data structure offers efficient operations on sparse simplicial complexes. For dense or maximal simplices, Skeleton-Blocker representations or Toplex Map representations are used.

References

  1. Prasolov, V. V. (2006), Elements of combinatorial and differential topology, American Mathematical Society, ISBN   0-8218-3809-1, MR   2233951
  2. Armstrong, M. A. (1983), Basic topology, Springer-Verlag, ISBN   0-387-90839-0, MR   0705632
  3. Wildberger, Norman J. (2012). "More homology computations". YouTube . Archived from the original on 2021-12-22.
  4. Hatcher, Allen (2002), Algebraic topology, Cambridge University Press, ISBN   0-521-79540-0, MR   1867354
  5. Edelsbrunner, H.; Letscher, D.; Zomorodian, A. (2002). "Topological Persistence and Simplification". Discrete & Computational Geometry . 28 (4): 511–533. doi: 10.1007/s00454-002-2885-2 .
    Robins, V. (Summer 1999). "Towards computing homology from finite approximations" (PDF). Topology Proceedings. 24: 503–532.