Chain complex

Last updated

In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups (or modules) and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is included in the kernel of the next. Associated to a chain complex is its homology, which describes how the images are included in the kernels.

Contents

A cochain complex is similar to a chain complex, except that its homomorphisms are in the opposite direction. The homology of a cochain complex is called its cohomology.

In algebraic topology, the singular chain complex of a topological space X is constructed using continuous maps from a simplex to X, and the homomorphisms of the chain complex capture how these maps restrict to the boundary of the simplex. The homology of this chain complex is called the singular homology of X, and is a commonly used invariant of a topological space.

Chain complexes are studied in homological algebra, but are used in several areas of mathematics, including abstract algebra, Galois theory, differential geometry and algebraic geometry. They can be defined more generally in abelian categories.

Definitions

A chain complex is a sequence of abelian groups or modules ..., A0, A1, A2, A3, A4, ... connected by homomorphisms (called boundary operators or differentials) dn : AnAn−1, such that the composition of any two consecutive maps is the zero map. Explicitly, the differentials satisfy dndn+1 = 0, or with indices suppressed, d2 = 0. The complex may be written out as follows.

The cochain complex is the dual notion to a chain complex. It consists of a sequence of abelian groups or modules ..., A0, A1, A2, A3, A4, ... connected by homomorphisms dn : AnAn+1 satisfying dn+1dn = 0. The cochain complex may be written out in a similar fashion to the chain complex.

The index n in either An or An is referred to as the degree (or dimension). The difference between chain and cochain complexes is that, in chain complexes, the differentials decrease dimension, whereas in cochain complexes they increase dimension. All the concepts and definitions for chain complexes apply to cochain complexes, except that they will follow this different convention for dimension, and often terms will be given the prefix co-. In this article, definitions will be given for chain complexes when the distinction is not required.

A bounded chain complex is one in which almost all the An are 0; that is, a finite complex extended to the left and right by 0. An example is the chain complex defining the simplicial homology of a finite simplicial complex. A chain complex is bounded above if all modules above some fixed degree N are 0, and is bounded below if all modules below some fixed degree are 0. Clearly, a complex is bounded both above and below if and only if the complex is bounded.

The elements of the individual groups of a (co)chain complex are called (co)chains. The elements in the kernel of d are called (co)cycles (or closed elements), and the elements in the image of d are called (co)boundaries (or exact elements). Right from the definition of the differential, all boundaries are cycles. The n-th (co)homology groupHn (Hn) is the group of (co)cycles modulo (co)boundaries in degree n, that is,

Exact sequences

An exact sequence (or exact complex) is a chain complex whose homology groups are all zero. This means all closed elements in the complex are exact. A short exact sequence is a bounded exact sequence in which only the groups Ak, Ak+1, Ak+2 may be nonzero. For example, the following chain complex is a short exact sequence.

In the middle group, the closed elements are the elements pZ; these are clearly the exact elements in this group.

Chain maps

A chain mapf between two chain complexes and is a sequence of homomorphisms for each n that commutes with the boundary operators on the two chain complexes, so . This is written out in the following commutative diagram.

Chain map.svg

A chain map sends cycles to cycles and boundaries to boundaries, and thus induces a map on homology .

A continuous map f between topological spaces X and Y induces a chain map between the singular chain complexes of X and Y, and hence induces a map f* between the singular homology of X and Y as well. When X and Y are both equal to the n-sphere, the map induced on homology defines the degree of the map f.

The concept of chain map reduces to the one of boundary through the construction of the cone of a chain map.

Chain homotopy

A chain homotopy offers a way to relate two chain maps that induce the same map on homology groups, even though the maps may be different. Given two chain complexes A and B, and two chain maps f, g : AB, a chain homotopy is a sequence of homomorphisms hn : AnBn+1 such that hdA + dBh = fg. The maps may be written out in a diagram as follows, but this diagram is not commutative.

Chain homotopy between chain complexes.svg

The map hdA + dBh is easily verified to induce the zero map on homology, for any h. It immediately follows that f and g induce the same map on homology. One says f and g are chain homotopic (or simply homotopic), and this property defines an equivalence relation between chain maps.

Let X and Y be topological spaces. In the case of singular homology, a homotopy between continuous maps f, g : XY induces a chain homotopy between the chain maps corresponding to f and g. This shows that two homotopic maps induce the same map on singular homology. The name "chain homotopy" is motivated by this example.

Examples

Singular homology

Let X be a topological space. Define Cn(X) for natural n to be the free abelian group formally generated by singular n-simplices in X, and define the boundary map to be

where the hat denotes the omission of a vertex. That is, the boundary of a singular simplex is the alternating sum of restrictions to its faces. It can be shown that ∂2 = 0, so is a chain complex; the singular homology is the homology of this complex.

Singular homology is a useful invariant of topological spaces up to homotopy equivalence. The degree zero homology group is a free abelian group on the path-components of X.

de Rham cohomology

The differential k-forms on any smooth manifold M form a real vector space called Ωk(M) under addition. The exterior derivative d maps Ωk(M) to Ωk+1(M), and d2 = 0 follows essentially from symmetry of second derivatives, so the vector spaces of k-forms along with the exterior derivative are a cochain complex.

The cohomology of this complex is called the de Rham cohomology of M. Locally constant functions are designated with its isomorphism with c the count of mutually disconnected components of M. This way the complex was extended to leave the complex exact at zero-form level using the subset operator.

Smooth maps between manifolds induce chain maps, and smooth homotopies between maps induce chain homotopies.

Category of chain complexes

Chain complexes of K-modules with chain maps form a category ChK, where K is a commutative ring.

If V = V and W = W are chain complexes, their tensor product is a chain complex with degree n elements given by

and differential given by

where a and b are any two homogeneous vectors in V and W respectively, and denotes the degree of a.

This tensor product makes the category ChK into a symmetric monoidal category. The identity object with respect to this monoidal product is the base ring K viewed as a chain complex in degree 0. The braiding is given on simple tensors of homogeneous elements by

The sign is necessary for the braiding to be a chain map.

Moreover, the category of chain complexes of K-modules also has internal Hom: given chain complexes V and W, the internal Hom of V and W, denoted Hom(V,W), is the chain complex with degree n elements given by and differential given by

.

We have a natural isomorphism

Further examples

See also

Related Research Articles

<span class="mw-page-title-main">Homological algebra</span> Branch of mathematics

Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology and abstract algebra at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

In mathematics, group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group G in an associated G-moduleM to elucidate the properties of the group. By treating the G-module as a kind of topological space with elements of representing n-simplices, topological properties of the space may be computed, such as the set of cohomology groups . The cohomology groups in turn provide insight into the structure of the group G and G-module M themselves. Group cohomology plays a role in the investigation of fixed points of a group action in a module or space and the quotient module or space with respect to a group action. Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications to group theory proper. As in algebraic topology, there is a dual theory called group homology. The techniques of group cohomology can also be extended to the case that instead of a G-module, G acts on a nonabelian G-group; in effect, a generalization of a module to non-Abelian coefficients.

In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups Intuitively, singular homology counts, for each dimension n, the n-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions.

In mathematics, certain functors may be derived to obtain other functors closely related to the original ones. This operation, while fairly abstract, unifies a number of constructions throughout mathematics.

In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.

In mathematics, particularly in algebraic topology, Alexander–Spanier cohomology is a cohomology theory for topological spaces.

In mathematics, the Ext functors are the derived functors of the Hom functor. Along with the Tor functor, Ext is one of the core concepts of homological algebra, in which ideas from algebraic topology are used to define invariants of algebraic structures. The cohomology of groups, Lie algebras, and associative algebras can all be defined in terms of Ext. The name comes from the fact that the first Ext group Ext1 classifies extensions of one module by another.

In mathematics, the derived categoryD(A) of an abelian category A is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on A. The construction proceeds on the basis that the objects of D(A) should be chain complexes in A, with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences.

In algebraic topology, universal coefficient theorems establish relationships between homology groups (or cohomology groups) with different coefficients. For instance, for every topological space X, its integral homology groups:

In mathematics, in particular in homological algebra, a differential graded algebra is a graded associative algebra with an added chain complex structure that respects the algebra structure.

In mathematics, especially homological algebra, a differential graded category, often shortened to dg-category or DG category, is a category whose morphism sets are endowed with the additional structure of a differential graded -module.

In homological algebra in mathematics, the homotopy categoryK(A) of chain complexes in an additive category A is a framework for working with chain homotopies and homotopy equivalences. It lies intermediate between the category of chain complexes Kom(A) of A and the derived category D(A) of A when A is abelian; unlike the former it is a triangulated category, and unlike the latter its formation does not require that A is abelian. Philosophically, while D(A) turns into isomorphisms any maps of complexes that are quasi-isomorphisms in Kom(A), K(A) does so only for those that are quasi-isomorphisms for a "good reason", namely actually having an inverse up to homotopy equivalence. Thus, K(A) is more understandable than D(A).

In homological algebra, the mapping cone is a construction on a map of chain complexes inspired by the analogous construction in topology. In the theory of triangulated categories it is a kind of combined kernel and cokernel: if the chain complexes take their terms in an abelian category, so that we can talk about cohomology, then the cone of a map f being acyclic means that the map is a quasi-isomorphism; if we pass to the derived category of complexes, this means that f is an isomorphism there, which recalls the familiar property of maps of groups, modules over a ring, or elements of an arbitrary abelian category that if the kernel and cokernel both vanish, then the map is an isomorphism. If we are working in a t-category, then in fact the cone furnishes both the kernel and cokernel of maps between objects of its core.

In mathematics, specifically in algebraic topology, the Eilenberg–Zilber theorem is an important result in establishing the link between the homology groups of a product space and those of the spaces and . The theorem first appeared in a 1953 paper in the American Journal of Mathematics by Samuel Eilenberg and Joseph A. Zilber. One possible route to a proof is the acyclic model theorem.

In mathematics, in the field of algebraic topology, the Eilenberg–Moore spectral sequence addresses the calculation of the homology groups of a pullback over a fibration. The spectral sequence formulates the calculation from knowledge of the homology of the remaining spaces. Samuel Eilenberg and John C. Moore's original paper addresses this for singular homology.

In mathematics, the cotangent complex is a common generalisation of the cotangent sheaf, normal bundle and virtual tangent bundle of a map of geometric spaces such as manifolds or schemes. If is a morphism of geometric or algebraic objects, the corresponding cotangent complex can be thought of as a universal "linearization" of it, which serves to control the deformation theory of . It is constructed as an object in a certain derived category of sheaves on using the methods of homotopical algebra.

In mathematics, a weak equivalence is a notion from homotopy theory that in some sense identifies objects that have the same "shape". This notion is formalized in the axiomatic definition of a model category.

This is a glossary of properties and concepts in algebraic topology in mathematics.

In algebraic topology, given a continuous map f: XY of topological spaces and a ring R, the pullback along f on cohomology theory is a grade-preserving R-algebra homomorphism:

References

  1. "Graph complex".