In mathematics, in particular abstract algebra and topology, a differential graded Lie algebra (or dg Lie algebra, or dgla) is a graded vector space with added Lie algebra and chain complex structures that are compatible. Such objects have applications in deformation theory [1] and rational homotopy theory.
A differential graded Lie algebra is a graded vector space over a field of characteristic zero together with a bilinear map and a differential satisfying
the graded Jacobi identity:
and the graded Leibniz rule:
for any homogeneous elements x, y and z in L. Notice here that the differential lowers the degree and so this differential graded Lie algebra is considered to be homologically graded. If instead the differential raised degree the differential graded Lie algebra is said to be cohomologically graded (usually to reinforce this point the grading is written in superscript: ). The choice of cohomological grading usually depends upon personal preference or the situation as they are equivalent: a homologically graded space can be made into a cohomological one via setting .
Alternative equivalent definitions of a differential graded Lie algebra include:
A morphism of differential graded Lie algebras is a graded linear map that commutes with the bracket and the differential, i.e., and . Differential graded Lie algebras and their morphisms define a category.
The product of two differential graded Lie algebras, , is defined as follows: take the direct sum of the two graded vector spaces , and equip it with the bracket and differential .
The coproduct of two differential graded Lie algebras, , is often called the free product. It is defined as the free graded Lie algebra on the two underlying vector spaces with the unique differential extending the two original ones modulo the relations present in either of the two original Lie algebras.
The main application is to the deformation theory over fields of characteristic zero (in particular over the complex numbers.) The idea goes back to Daniel Quillen's work on rational homotopy theory. One way to formulate this thesis (due to Vladimir Drinfeld, Boris Feigin, Pierre Deligne, Maxim Kontsevich, and others) might be: [1]
A Maurer-Cartan element is a degree −1 element, , that is a solution to the Maurer–Cartan equation:
Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology and abstract algebra at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.
In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics.
In differential geometry, the Lie derivative, named after Sophus Lie by Władysław Ślebodziński, evaluates the change of a tensor field, along the flow defined by another vector field. This change is coordinate invariant and therefore the Lie derivative is defined on any differentiable manifold.
In mathematics, especially vector calculus and differential topology, a closed form is a differential form α whose exterior derivative is zero, and an exact form is a differential form, α, that is the exterior derivative of another differential form β. Thus, an exact form is in the image of d, and a closed form is in the kernel of d.
In differential geometry, an affine connection is a geometric object on a smooth manifold which connects nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. Connections are among the simplest methods of defining differentiation of the sections of vector bundles.
In mathematics, the Maurer–Cartan form for a Lie group G is a distinguished differential one-form on G that carries the basic infinitesimal information about the structure of G. It was much used by Élie Cartan as a basic ingredient of his method of moving frames, and bears his name together with that of Ludwig Maurer.
In mathematics, a maximal compact subgroupK of a topological group G is a subgroup K that is a compact space, in the subspace topology, and maximal amongst such subgroups.
In mathematics, a triangulated category is a category with the additional structure of a "translation functor" and a class of "exact triangles". Prominent examples are the derived category of an abelian category, as well as the stable homotopy category. The exact triangles generalize the short exact sequences in an abelian category, as well as fiber sequences and cofiber sequences in topology.
In mathematics, Lie algebra cohomology is a cohomology theory for Lie algebras. It was first introduced in 1929 by Élie Cartan to study the topology of Lie groups and homogeneous spaces by relating cohomological methods of Georges de Rham to properties of the Lie algebra. It was later extended by Claude Chevalley and Samuel Eilenberg (1948) to coefficients in an arbitrary Lie module.
In mathematics, the derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, and geometry.
In mathematics, in particular abstract algebra and topology, a differential graded algebra is a graded algebra with an added chain complex structure that respects the algebra structure.
In mathematics, a D-module is a module over a ring D of differential operators. The major interest of such D-modules is as an approach to the theory of linear partial differential equations. Since around 1970, D-module theory has been built up, mainly as a response to the ideas of Mikio Sato on algebraic analysis, and expanding on the work of Sato and Joseph Bernstein on the Bernstein–Sato polynomial.
In mathematics, a graded Lie algebra is a Lie algebra endowed with a gradation which is compatible with the Lie bracket. In other words, a graded Lie algebra is a Lie algebra which is also a nonassociative graded algebra under the bracket operation. A choice of Cartan decomposition endows any semisimple Lie algebra with the structure of a graded Lie algebra. Any parabolic Lie algebra is also a graded Lie algebra.
In mathematics and specifically in topology, rational homotopy theory is a simplified version of homotopy theory for topological spaces, in which all torsion in the homotopy groups is ignored. It was founded by Dennis Sullivan (1977) and Daniel Quillen (1969). This simplification of homotopy theory makes calculations much easier.
A Representation up to homotopy has several meanings. One of the earliest appeared in the `physical' context of constrained Hamiltonian systems. The essential idea is lifting a non-representation on a quotient to a representation up to strong homotopy on a resolution of the quotient. As a concept in differential geometry, it generalizes the notion of representation of a Lie algebra to Lie algebroids and nontrivial vector bundles. As such, it was introduced by Abad and Crainic.
In algebraic geometry, a derived scheme is a pair consisting of a topological space X and a sheaf of commutative ring spectra on X such that (1) the pair is a scheme and (2) is a quasi-coherent -module. The notion gives a homotopy-theoretic generalization of a scheme.
In mathematics, the term “graded” has a number of meanings, mostly related:
In algebra, a differential graded module, or dg-module, is a -graded module together with a differential; i.e., a square-zero graded endomorphism of the module of degree 1 or −1, depending on the convention. In other words, it is a chain complex having a structure of a module, while a differential graded algebra is a chain complex with a structure of an algebra.
In mathematics, in particular abstract algebra and topology, a homotopy Lie algebra is a generalisation of the concept of a differential graded Lie algebra. To be a little more specific, the Jacobi identity only holds up to homotopy. Therefore, a differential graded Lie algebra can be seen as a homotopy Lie algebra where the Jacobi identity holds on the nose. These homotopy algebras are useful in classifying deformation problems over characteristic 0 in deformation theory because deformation functors are classified by quasi-isomorphism classes of -algebras. This was later extended to all characteristics by Jonathan Pridham.
This is a glossary of properties and concepts in algebraic topology in mathematics.