Morphism

Last updated

In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in analysis and topology, continuous functions, and so on.

Contents

In category theory, morphism is a broadly similar idea: the mathematical objects involved need not be sets, and the relationships between them may be something other than maps, although the morphisms between the objects of a given category have to behave similarly to maps in that they have to admit an associative operation similar to function composition. A morphism in category theory is an abstraction of a homomorphism. [1]

The study of morphisms and of the structures (called "objects") over which they are defined is central to category theory. Much of the terminology of morphisms, as well as the intuition underlying them, comes from concrete categories, where the objects are simply sets with some additional structure, and morphisms are structure-preserving functions. In category theory, morphisms are sometimes also called arrows.

Definition

A category C consists of two classes, one of objects and the other of morphisms. There are two objects that are associated to every morphism, the source and the target. A morphismffromXtoY is a morphism with source X and target Y; it is commonly written as f : XY or XfY the latter form being better suited for commutative diagrams.

For many common categories, objects are sets (often with some additional structure) and morphisms are functions from an object to another object. Therefore, the source and the target of a morphism are often called domain and codomain respectively.

Morphisms are equipped with a partial binary operation, called composition. The composition of two morphisms f and g is defined precisely when the target of f is the source of g, and is denoted gf (or sometimes simply gf). The source of gf is the source of f, and the target of gf is the target of g. The composition satisfies two axioms:

Identity
For every object X, there exists a morphism idX : XX called the identity morphism on X, such that for every morphism f : AB we have idBf = f = f ∘ idA.
Associativity
h ∘ (gf) = (hg) ∘ f whenever all the compositions are defined, i.e. when the target of f is the source of g, and the target of g is the source of h.

For a concrete category (a category in which the objects are sets, possibly with additional structure, and the morphisms are structure-preserving functions), the identity morphism is just the identity function, and composition is just ordinary composition of functions.

The composition of morphisms is often represented by a commutative diagram. For example,

Commutative diagram for morphism.svg

The collection of all morphisms from X to Y is denoted HomC(X, Y) or simply Hom(X, Y) and called the hom-set between X and Y. Some authors write MorC(X, Y), Mor(X, Y) or C(X, Y). The term hom-set is something of a misnomer, as the collection of morphisms is not required to be a set; a category where Hom(X, Y) is a set for all objects X and Y is called locally small. Because hom-sets may not be sets, some people prefer to use the term "hom-class".

The domain and codomain are in fact part of the information determining a morphism. For example, in the category of sets, where morphisms are functions, two functions may be identical as sets of ordered pairs (may have the same range), while having different codomains. The two functions are distinct from the viewpoint of category theory. Thus many authors require that the hom-classes Hom(X, Y) be disjoint. In practice, this is not a problem because if this disjointness does not hold, it can be assured by appending the domain and codomain to the morphisms (say, as the second and third components of an ordered triple).

Some special morphisms

Monomorphisms and epimorphisms

A morphism f : XY is called a monomorphism if fg1 = fg2 implies g1 = g2 for all morphisms g1, g2 : ZX. A monomorphism can be called a mono for short, and we can use monic as an adjective. [2] A morphism f has a left inverse or is a split monomorphism if there is a morphism g : YX such that gf = idX. Thus fg : YY is idempotent; that is, (fg)2 = f ∘ (gf) ∘ g = fg. The left inverse g is also called a retraction of f. [2]

Morphisms with left inverses are always monomorphisms, but the converse is not true in general; a monomorphism may fail to have a left inverse. In concrete categories, a function that has a left inverse is injective. Thus in concrete categories, monomorphisms are often, but not always, injective. The condition of being an injection is stronger than that of being a monomorphism, but weaker than that of being a split monomorphism.

Dually to monomorphisms, a morphism f : XY is called an epimorphism if g1f = g2f implies g1 = g2 for all morphisms g1, g2 : YZ. An epimorphism can be called an epi for short, and we can use epic as an adjective. [2] A morphism f has a right inverse or is a split epimorphism if there is a morphism g : YX such that fg = idY. The right inverse g is also called a section of f. [2] Morphisms having a right inverse are always epimorphisms, but the converse is not true in general, as an epimorphism may fail to have a right inverse.

If a monomorphism f splits with left inverse g, then g is a split epimorphism with right inverse f. In concrete categories, a function that has a right inverse is surjective. Thus in concrete categories, epimorphisms are often, but not always, surjective. The condition of being a surjection is stronger than that of being an epimorphism, but weaker than that of being a split epimorphism. In the category of sets, the statement that every surjection has a section is equivalent to the axiom of choice.

A morphism that is both an epimorphism and a monomorphism is called a bimorphism.

Isomorphisms

A morphism f : XY is called an isomorphism if there exists a morphism g : YX such that fg = idY and gf = idX. If a morphism has both left-inverse and right-inverse, then the two inverses are equal, so f is an isomorphism, and g is called simply the inverse of f. Inverse morphisms, if they exist, are unique. The inverse g is also an isomorphism, with inverse f. Two objects with an isomorphism between them are said to be isomorphic or equivalent.

While every isomorphism is a bimorphism, a bimorphism is not necessarily an isomorphism. For example, in the category of commutative rings the inclusion ZQ is a bimorphism that is not an isomorphism. However, any morphism that is both an epimorphism and a split monomorphism, or both a monomorphism and a split epimorphism, must be an isomorphism. A category, such as a Set, in which every bimorphism is an isomorphism is known as a balanced category.

Endomorphisms and automorphisms

A morphism f : XX (that is, a morphism with identical source and target) is an endomorphism of X. A split endomorphism is an idempotent endomorphism f if f admits a decomposition f = hg with gh = id. In particular, the Karoubi envelope of a category splits every idempotent morphism.

An automorphism is a morphism that is both an endomorphism and an isomorphism. In every category, the automorphisms of an object always form a group, called the automorphism group of the object.

Examples

For more examples, see Category theory.

See also

Notes

  1. "morphism". nLab. Retrieved 2019-06-12.
  2. 1 2 3 4 Jacobson (2009), p. 15.

Related Research Articles

<span class="mw-page-title-main">Automorphism</span> Isomorphism of an object to itself

In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms of an object forms a group, called the automorphism group. It is, loosely speaking, the symmetry group of the object.

<span class="mw-page-title-main">Category theory</span> General theory of mathematical structures

Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in almost all areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality.

<span class="mw-page-title-main">Endomorphism</span> Self-self morphism

In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space V is a linear map f: VV, and an endomorphism of a group G is a group homomorphism f: GG. In general, we can talk about endomorphisms in any category. In the category of sets, endomorphisms are functions from a set S to itself.

<span class="mw-page-title-main">Group homomorphism</span> Mathematical function between groups that preserves multiplication structure

In mathematics, given two groups, (G,∗) and (H, ·), a group homomorphism from (G,∗) to (H, ·) is a function h : GH such that for all u and v in G it holds that

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type. The word homomorphism comes from the Ancient Greek language: ὁμός meaning "same" and μορφή meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).

In ring theory, a branch of abstract algebra, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if R and S are rings, then a ring homomorphism is a function f : RS such that f is:

<span class="mw-page-title-main">Category (mathematics)</span> Mathematical object that generalizes the standard notions of sets and functions

In mathematics, a category is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions.

<span class="mw-page-title-main">Monomorphism</span> Injective homomorphism

In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from X to Y is often denoted with the notation .

In category theory, an epimorphism is a morphism f : XY that is right-cancellative in the sense that, for all objects Z and all morphisms g1, g2: YZ,

<span class="mw-page-title-main">Commutative diagram</span> Collection of maps which give the same result

In mathematics, and especially in category theory, a commutative diagram is a diagram such that all directed paths in the diagram with the same start and endpoints lead to the same result. It is said that commutative diagrams play the role in category theory that equations play in algebra.

The cokernel of a linear mapping of vector spaces f : XY is the quotient space Y / im(f) of the codomain of f by the image of f. The dimension of the cokernel is called the corank of f.

In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation.

In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again continuous, and the identity function is continuous. The study of Top and of properties of topological spaces using the techniques of category theory is known as categorical topology.

In mathematics, especially in the field of category theory, the concept of injective object is a generalization of the concept of injective module. This concept is important in cohomology, in homotopy theory and in the theory of model categories. The dual notion is that of a projective object.

In category theory, a branch of mathematics, a subobject is, roughly speaking, an object that sits inside another object in the same category. The notion is a generalization of concepts such as subsets from set theory, subgroups from group theory, and subspaces from topology. Since the detailed structure of objects is immaterial in category theory, the definition of subobject relies on a morphism that describes how one object sits inside another, rather than relying on the use of elements.

This is a glossary of properties and concepts in category theory in mathematics.

<span class="mw-page-title-main">Section (category theory)</span>

In category theory, a branch of mathematics, a section is a right inverse of some morphism. Dually, a retraction is a left inverse of some morphism. In other words, if and are morphisms whose composition is the identity morphism on , then is a section of , and is a retraction of .

<span class="mw-page-title-main">Category of rings</span> Mathematical category whose objects are rings

In mathematics, the category of rings, denoted by Ring, is the category whose objects are rings and whose morphisms are ring homomorphisms. Like many categories in mathematics, the category of rings is large, meaning that the class of all rings is proper.

<span class="mw-page-title-main">Nodal decomposition</span>

In category theory, an abstract mathematical discipline, a nodal decomposition of a morphism is a representation of as a product , where is a strong epimorphism, a bimorphism, and a strong monomorphism.

References