Real-valued function

Last updated
Mass measured in grams is a function from this collection of weight to positive real numbers. The term "weight function", an allusion to this example, is used in pure and applied mathematics. Weights 20mg~500g.jpg
Mass measured in grams is a function from this collection of weight to positive real numbers. The term "weight function", an allusion to this example, is used in pure and applied mathematics.

In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain.

Contents

Real-valued functions of a real variable (commonly called real functions) and real-valued functions of several real variables are the main object of study of calculus and, more generally, real analysis. In particular, many function spaces consist of real-valued functions.

Algebraic structure

Let be the set of all functions from a set X to real numbers . Because is a field, may be turned into a vector space and a commutative algebra over the reals with the following operations:

These operations extend to partial functions from X to with the restriction that the partial functions f + g and fg are defined only if the domains of f and g have a nonempty intersection; in this case, their domain is the intersection of the domains of f and g.

Also, since is an ordered set, there is a partial order

on which makes a partially ordered ring.

Measurable

The σ-algebra of Borel sets is an important structure on real numbers. If X has its σ-algebra and a function f is such that the preimage f−1(B) of any Borel set B belongs to that σ-algebra, then f is said to be measurable. Measurable functions also form a vector space and an algebra as explained above in § Algebraic structure.

Moreover, a set (family) of real-valued functions on X can actually define a σ-algebra on X generated by all preimages of all Borel sets (or of intervals only, it is not important). This is the way how σ-algebras arise in (Kolmogorov's) probability theory, where real-valued functions on the sample space Ω are real-valued random variables.

Continuous

Real numbers form a topological space and a complete metric space. Continuous real-valued functions (which implies that X is a topological space) are important in theories of topological spaces and of metric spaces. The extreme value theorem states that for any real continuous function on a compact space its global maximum and minimum exist.

The concept of metric space itself is defined with a real-valued function of two variables, the metric , which is continuous. The space of continuous functions on a compact Hausdorff space has a particular importance. Convergent sequences also can be considered as real-valued continuous functions on a special topological space.

Continuous functions also form a vector space and an algebra as explained above in § Algebraic structure, and are a subclass of measurable functions because any topological space has the σ-algebra generated by open (or closed) sets.

Smooth

Real numbers are used as the codomain to define smooth functions. A domain of a real smooth function can be the real coordinate space (which yields a real multivariable function), a topological vector space, [1] an open subset of them, or a smooth manifold.

Spaces of smooth functions also are vector spaces and algebras as explained above in § Algebraic structure and are subspaces of the space of continuous functions.

Appearances in measure theory

A measure on a set is a non-negative real-valued functional on a σ-algebra of subsets. [2] Lp spaces on sets with a measure are defined from aforementioned real-valued measurable functions, although they are actually quotient spaces. More precisely, whereas a function satisfying an appropriate summability condition defines an element of Lp space, in the opposite direction for any f ∈ Lp(X) and xX which is not an atom, the value f(x) is undefined. Though, real-valued Lp spaces still have some of the structure described above in § Algebraic structure. Each of Lp spaces is a vector space and have a partial order, and there exists a pointwise multiplication of "functions" which changes p, namely

For example, pointwise product of two L2 functions belongs to L1.

Other appearances

Other contexts where real-valued functions and their special properties are used include monotonic functions (on ordered sets), convex functions (on vector and affine spaces), harmonic and subharmonic functions (on Riemannian manifolds), analytic functions (usually of one or more real variables), algebraic functions (on real algebraic varieties), and polynomials (of one or more real variables).

See also

Footnotes

  1. Different definitions of derivative exist in general, but for finite dimensions they result in equivalent definitions of classes of smooth functions.
  2. Actually, a measure may have values in [0, +∞]: see extended real number line.

Related Research Articles

In mathematics, any vector space has a corresponding dual vector space consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants.

<span class="mw-page-title-main">Random variable</span> Variable representing a random phenomenon

A random variable is a mathematical formalization of a quantity or object which depends on random events. The term 'random variable' can be misleading as it is not actually random or a variable, but rather it is a function from possible outcomes in a sample space to a measurable space, often to the real numbers.

In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space.

In mathematics and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in direct analogy to the definition that a continuous function between topological spaces preserves the topological structure: the preimage of any open set is open. In real analysis, measurable functions are used in the definition of the Lebesgue integral. In probability theory, a measurable function on a probability space is known as a random variable.

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz.

Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.

In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.

In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set X into a vector space has a natural vector space structure given by pointwise addition and scalar multiplication. In other scenarios, the function space might inherit a topological or metric structure, hence the name function space.

In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value – the value it would take “on average” over an arbitrarily large number of occurrences – given that a certain set of "conditions" is known to occur. If the random variable can take on only a finite number of values, the “conditions” are that the variable can only take on a subset of those values. More formally, in the case when the random variable is defined over a discrete probability space, the "conditions" are a partition of this probability space.

In functional analysis and related branches of mathematics, the Banach–Alaoglu theorem states that the closed unit ball of the dual space of a normed vector space is compact in the weak* topology. A common proof identifies the unit ball with the weak-* topology as a closed subset of a product of compact sets with the product topology. As a consequence of Tychonoff's theorem, this product, and hence the unit ball within, is compact.

The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of the family of functions. The theorem is the basis of many proofs in mathematics, including that of the Peano existence theorem in the theory of ordinary differential equations, Montel's theorem in complex analysis, and the Peter–Weyl theorem in harmonic analysis and various results concerning compactness of integral operators.

In mathematics, particularly in functional analysis, a projection-valued measure (PVM) is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. Projection-valued measures are formally similar to real-valued measures, except that their values are self-adjoint projections rather than real numbers. As in the case of ordinary measures, it is possible to integrate complex-valued functions with respect to a PVM; the result of such an integration is a linear operator on the given Hilbert space.

In mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers , or a subset of that contains an interval of positive length. Most real functions that are considered and studied are differentiable in some interval. The most widely considered such functions are the real functions, which are the real-valued functions of a real variable, that is, the functions of a real variable whose codomain is the set of real numbers.

In probability theory, random element is a generalization of the concept of random variable to more complicated spaces than the simple real line. The concept was introduced by Maurice Fréchet (1948) who commented that the “development of probability theory and expansion of area of its applications have led to necessity to pass from schemes where (random) outcomes of experiments can be described by number or a finite set of numbers, to schemes where outcomes of experiments represent, for example, vectors, functions, processes, fields, series, transformations, and also sets or collections of sets.”

In probability theory, a random measure is a measure-valued random element. Random measures are for example used in the theory of random processes, where they form many important point processes such as Poisson point processes and Cox processes.

In mathematics—specifically, in functional analysis—a weakly measurable function taking values in a Banach space is a function whose composition with any element of the dual space is a measurable function in the usual (strong) sense. For separable spaces, the notions of weak and strong measurability agree.

In mathematics, the Pettis integral or Gelfand–Pettis integral, named after Israel M. Gelfand and Billy James Pettis, extends the definition of the Lebesgue integral to vector-valued functions on a measure space, by exploiting duality. The integral was introduced by Gelfand for the case when the measure space is an interval with Lebesgue measure. The integral is also called the weak integral in contrast to the Bochner integral, which is the strong integral.

In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and

In mathematics, , the vector space of bounded sequences with the supremum norm, and , the vector space of essentially bounded measurable functions with the essential supremum norm, are two closely related Banach spaces. In fact the former is a special case of the latter. As a Banach space they are the continuous dual of the Banach spaces of absolutely summable sequences, and of absolutely integrable measurable functions. Pointwise multiplication gives them the structure of a Banach algebra, and in fact they are the standard examples of abelian Von Neumann algebras.

References

Weisstein, Eric W. "Real Function". MathWorld .