This article includes a list of general references, but it lacks sufficient corresponding inline citations .(January 2021) |
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general.
The intuition behind this concept dates back to ancient Greece, when Archimedes tried to calculate the area of a circle. [1] [2] But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann Radon, Constantin Carathéodory, and Maurice Fréchet, among others.
Let be a set and a σ-algebra over A set function from to the extended real number line is called a measure if the following conditions hold:
If at least one set has finite measure, then the requirement is met automatically due to countable additivity: and therefore
If the condition of non-negativity is dropped, and takes on at most one of the values of then is called a signed measure .
The pair is called a measurable space , and the members of are called measurable sets.
A triple is called a measure space . A probability measure is a measure with total measure one – that is, A probability space is a measure space with a probability measure.
For measure spaces that are also topological spaces various compatibility conditions can be placed for the measure and the topology. Most measures met in practice in analysis (and in many cases also in probability theory) are Radon measures. Radon measures have an alternative definition in terms of linear functionals on the locally convex topological vector space of continuous functions with compact support. This approach is taken by Bourbaki (2004) and a number of other sources. For more details, see the article on Radon measures.
Some important measures are listed here.
Other 'named' measures used in various theories include: Borel measure, Jordan measure, ergodic measure, Gaussian measure, Baire measure, Radon measure, Young measure, and Loeb measure.
In physics an example of a measure is spatial distribution of mass (see for example, gravity potential), or another non-negative extensive property, conserved (see conservation law for a list of these) or not. Negative values lead to signed measures, see "generalizations" below.
Measure theory is used in machine learning. One example is the Flow Induced Probability Measure in GFlowNet. [3]
Let be a measure.
If and are measurable sets with then
For any countable sequence of (not necessarily disjoint) measurable sets in
If are measurable sets that are increasing (meaning that ) then the union of the sets is measurable and
If are measurable sets that are decreasing (meaning that ) then the intersection of the sets is measurable; furthermore, if at least one of the has finite measure then
This property is false without the assumption that at least one of the has finite measure. For instance, for each let which all have infinite Lebesgue measure, but the intersection is empty.
A measurable set is called a null set if A subset of a null set is called a negligible set. A negligible set need not be measurable, but every measurable negligible set is automatically a null set. A measure is called complete if every negligible set is measurable.
A measure can be extended to a complete one by considering the σ-algebra of subsets which differ by a negligible set from a measurable set that is, such that the symmetric difference of and is contained in a null set. One defines to equal
If is -measurable, then for almost all [4] This property is used in connection with Lebesgue integral.
Both and are monotonically non-increasing functions of so both of them have at most countably many discontinuities and thus they are continuous almost everywhere, relative to the Lebesgue measure. If then so that as desired.
If is such that then monotonicity implies so that as required. If for all then we are done, so assume otherwise. Then there is a unique such that is infinite to the left of (which can only happen when ) and finite to the right. Arguing as above, when Similarly, if and then
For let be a monotonically non-decreasing sequence converging to The monotonically non-increasing sequences of members of has at least one finitely -measurable component, and Continuity from above guarantees that The right-hand side then equals if is a point of continuity of Since is continuous almost everywhere, this completes the proof.
Measures are required to be countably additive. However, the condition can be strengthened as follows. For any set and any set of nonnegative define: That is, we define the sum of the to be the supremum of all the sums of finitely many of them.
A measure on is -additive if for any and any family of disjoint sets the following hold: The second condition is equivalent to the statement that the ideal of null sets is -complete.
A measure space is called finite if is a finite real number (rather than ). Nonzero finite measures are analogous to probability measures in the sense that any finite measure is proportional to the probability measure A measure is called σ-finite if can be decomposed into a countable union of measurable sets of finite measure. Analogously, a set in a measure space is said to have a σ-finite measure if it is a countable union of sets with finite measure.
For example, the real numbers with the standard Lebesgue measure are σ-finite but not finite. Consider the closed intervals for all integers there are countably many such intervals, each has measure 1, and their union is the entire real line. Alternatively, consider the real numbers with the counting measure, which assigns to each finite set of reals the number of points in the set. This measure space is not σ-finite, because every set with finite measure contains only finitely many points, and it would take uncountably many such sets to cover the entire real line. The σ-finite measure spaces have some very convenient properties; σ-finiteness can be compared in this respect to the Lindelöf property of topological spaces.[ original research? ] They can be also thought of as a vague generalization of the idea that a measure space may have 'uncountable measure'.
Let be a set, let be a sigma-algebra on and let be a measure on We say is semifinite to mean that for all [5]
Semifinite measures generalize sigma-finite measures, in such a way that some big theorems of measure theory that hold for sigma-finite but not arbitrary measures can be extended with little modification to hold for semifinite measures. (To-do: add examples of such theorems; cf. the talk page.)
The zero measure is sigma-finite and thus semifinite. In addition, the zero measure is clearly less than or equal to It can be shown there is a greatest measure with these two properties:
Theorem (semifinite part) [9] — For any measure on there exists, among semifinite measures on that are less than or equal to a greatest element
We say the semifinite part of to mean the semifinite measure defined in the above theorem. We give some nice, explicit formulas, which some authors may take as definition, for the semifinite part:
Since is semifinite, it follows that if then is semifinite. It is also evident that if is semifinite then
Every measure that is not the zero measure is not semifinite. (Here, we say measure to mean a measure whose range lies in : ) Below we give examples of measures that are not zero measures.
Measures that are not semifinite are very wild when restricted to certain sets. [Note 1] Every measure is, in a sense, semifinite once its part (the wild part) is taken away.
— A. Mukherjea and K. Pothoven, Real and Functional Analysis, Part A: Real Analysis (1985)
Theorem (Luther decomposition) [14] [15] — For any measure on there exists a measure on such that for some semifinite measure on In fact, among such measures there exists a least measure Also, we have
We say the part of to mean the measure defined in the above theorem. Here is an explicit formula for :
Localizable measures are a special case of semifinite measures and a generalization of sigma-finite measures.
Let be a set, let be a sigma-algebra on and let be a measure on
A measure is said to be s-finite if it is a countable sum of finite measures. S-finite measures are more general than sigma-finite ones and have applications in the theory of stochastic processes.
If the axiom of choice is assumed to be true, it can be proved that not all subsets of Euclidean space are Lebesgue measurable; examples of such sets include the Vitali set, and the non-measurable sets postulated by the Hausdorff paradox and the Banach–Tarski paradox.
For certain purposes, it is useful to have a "measure" whose values are not restricted to the non-negative reals or infinity. For instance, a countably additive set function with values in the (signed) real numbers is called a signed measure , while such a function with values in the complex numbers is called a complex measure . Observe, however, that complex measure is necessarily of finite variation, hence complex measures include finite signed measures but not, for example, the Lebesgue measure.
Measures that take values in Banach spaces have been studied extensively. [22] A measure that takes values in the set of self-adjoint projections on a Hilbert space is called a projection-valued measure ; these are used in functional analysis for the spectral theorem. When it is necessary to distinguish the usual measures which take non-negative values from generalizations, the term positive measure is used. Positive measures are closed under conical combination but not general linear combination, while signed measures are the linear closure of positive measures.
Another generalization is the finitely additive measure, also known as a content. This is the same as a measure except that instead of requiring countable additivity we require only finite additivity. Historically, this definition was used first. It turns out that in general, finitely additive measures are connected with notions such as Banach limits, the dual of and the Stone–Čech compactification. All these are linked in one way or another to the axiom of choice. Contents remain useful in certain technical problems in geometric measure theory; this is the theory of Banach measures.
A charge is a generalization in both directions: it is a finitely additive, signed measure. [23] (Cf. ba space for information about bounded charges, where we say a charge is bounded to mean its range its a bounded subset of R.)
In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets. Some authors require additional restrictions on the measure, as described below.
In mathematical analysis, a null set is a Lebesgue measurable set of real numbers that has measure zero. This can be characterized as a set that can be covered by a countable union of intervals of arbitrarily small total length.
In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space.
In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the good convergence behaviour of monotonic sequences, i.e. sequences that are non-increasing, or non-decreasing. In its simplest form, it says that a non-decreasing bounded-above sequence of real numbers converges to its smallest upper bound, its supremum. Likewise, a non-increasing bounded-below sequence converges to its largest lower bound, its infimum. In particular, infinite sums of non-negative numbers converge to the supremum of the partial sums if and only if the partial sums are bounded.
In mathematics, specifically measure theory, the counting measure is an intuitive way to put a measure on any set – the "size" of a subset is taken to be the number of elements in the subset if the subset has finitely many elements, and infinity if the subset is infinite.
In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.
In mathematics, the Radon–Nikodym theorem is a result in measure theory that expresses the relationship between two measures defined on the same measurable space. A measure is a set function that assigns a consistent magnitude to the measurable subsets of a measurable space. Examples of a measure include area and volume, where the subsets are sets of points; or the probability of an event, which is a subset of possible outcomes within a wider probability space.
In the mathematical field of measure theory, an outer measure or exterior measure is a function defined on all subsets of a given set with values in the extended real numbers satisfying some additional technical conditions. The theory of outer measures was first introduced by Constantin Carathéodory to provide an abstract basis for the theory of measurable sets and countably additive measures. Carathéodory's work on outer measures found many applications in measure-theoretic set theory, and was used in an essential way by Hausdorff to define a dimension-like metric invariant now called Hausdorff dimension. Outer measures are commonly used in the field of geometric measure theory.
In mathematics, specifically measure theory, a complex measure generalizes the concept of measure by letting it have complex values. In other words, one allows for sets whose size is a complex number.
In mathematics, more precisely in measure theory, an atom is a measurable set that has positive measure and contains no set of smaller positive measures. A measure that has no atoms is called non-atomic or atomless.
In mathematics, the Bochner integral, named for Salomon Bochner, extends the definition of Lebesgue integral to functions that take values in a Banach space, as the limit of integrals of simple functions.
In measure theory, Carathéodory's extension theorem states that any pre-measure defined on a given ring of subsets R of a given set Ω can be extended to a measure on the σ-ring generated by R, and this extension is unique if the pre-measure is σ-finite. Consequently, any pre-measure on a ring containing all intervals of real numbers can be extended to the Borel algebra of the set of real numbers. This is an extremely powerful result of measure theory, and leads, for example, to the Lebesgue measure.
In mathematics, a positive or a signed measure μ on a set X is called σ-finite if X equals the union of a sequence of measurable sets A1, A2, A3, … of finite measure μ(An) < ∞. Similarly, a subset of X is called σ-finite if it equals such a countable union. A measure being σ-finite is a weaker condition than being finite (i.e., weaker than μ(X) < ∞).
Convergence in measure is either of two distinct mathematical concepts both of which generalize the concept of convergence in probability.
In mathematics, more precisely in measure theory, a measure on the real line is called a discrete measure if it is concentrated on an at most countable set. The support need not be a discrete set. Geometrically, a discrete measure is a collection of point masses.
In mathematics, a conservative system is a dynamical system which stands in contrast to a dissipative system. Roughly speaking, such systems have no friction or other mechanism to dissipate the dynamics, and thus, their phase space does not shrink over time. Precisely speaking, they are those dynamical systems that have a null wandering set: under time evolution, no portion of the phase space ever "wanders away", never to be returned to or revisited. Alternately, conservative systems are those to which the Poincaré recurrence theorem applies. An important special case of conservative systems are the measure-preserving dynamical systems.
In probability theory, a standard probability space, also called Lebesgue–Rokhlin probability space or just Lebesgue space is a probability space satisfying certain assumptions introduced by Vladimir Rokhlin in 1940. Informally, it is a probability space consisting of an interval and/or a finite or countable number of atoms.
In measure theory, a branch of mathematics that studies generalized notions of volumes, an s-finite measure is a special type of measure. An s-finite measure is more general than a finite measure, but allows one to generalize certain proofs for finite measures.
In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and
In mathematics, lifting theory was first introduced by John von Neumann in a pioneering paper from 1931, in which he answered a question raised by Alfréd Haar. The theory was further developed by Dorothy Maharam (1958) and by Alexandra Ionescu Tulcea and Cassius Ionescu Tulcea (1961). Lifting theory was motivated to a large extent by its striking applications. Its development up to 1969 was described in a monograph of the Ionescu Tulceas. Lifting theory continued to develop since then, yielding new results and applications.