Almost everywhere

Last updated
The function 1/x is differentiable and continuous almost everywhere, more precisely, everywhere except at x = 0. Function-1 x.svg
The function 1/x is differentiable and continuous almost everywhere, more precisely, everywhere except at x = 0.

In measure theory (a branch of mathematical analysis), a property holds almost everywhere if, in a technical sense, the set for which the property holds takes up nearly all possibilities. The notion of "almost everywhere" is a companion notion to the concept of measure zero, and is analogous to the notion of almost surely in probability theory.

Contents

More specifically, a property holds almost everywhere if it holds for all elements in a set except a subset of measure zero, [1] [2] or equivalently, if the set of elements for which the property holds is conull. In cases where the measure is not complete, it is sufficient that the set be contained within a set of measure zero. When discussing sets of real numbers, the Lebesgue measure is usually assumed unless otherwise stated.

The term almost everywhere is abbreviated a.e.; [3] in older literature p.p. is used, to stand for the equivalent French language phrase presque partout. [4]

A set with full measure is one whose complement is of measure zero. In probability theory, the terms almost surely, almost certain and almost always refer to events with probability 1 not necessarily including all of the outcomes. These are exactly the sets of full measure in a probability space.

Occasionally, instead of saying that a property holds almost everywhere, it is said that the property holds for almost all elements (though the term almost all can also have other meanings).

Definition

If is a measure space, a property is said to hold almost everywhere in if there exists a set with , and all have the property . [5] Another common way of expressing the same thing is to say that "almost every point satisfies ", or that "for almost every , holds".

It is not required that the set has measure 0; it may not belong to . By the above definition, it is sufficient that be contained in some set that is measurable and has measure 0.

Properties

As a consequence of the first two properties, it is often possible to reason about "almost every point" of a measure space as though it were an ordinary point rather than an abstraction.[ citation needed ] This is often done implicitly in informal mathematical arguments. However, one must be careful with this mode of reasoning because of the third bullet above: universal quantification over uncountable families of statements is valid for ordinary points but not for "almost every point".

Examples

Definition using ultrafilters

Outside of the context of real analysis, the notion of a property true almost everywhere is sometimes defined in terms of an ultrafilter. An ultrafilter on a set X is a maximal collection F of subsets of X such that:

  1. If UF and UV then VF
  2. The intersection of any two sets in F is in F
  3. The empty set is not in F

A property P of points in X holds almost everywhere, relative to an ultrafilter F, if the set of points for which P holds is in F.

For example, one construction of the hyperreal number system defines a hyperreal number as an equivalence class of sequences that are equal almost everywhere as defined by an ultrafilter.

The definition of almost everywhere in terms of ultrafilters is closely related to the definition in terms of measures, because each ultrafilter defines a finitely-additive measure taking only the values 0 and 1, where a set has measure 1 if and only if it is included in the ultrafilter.

See also

Related Research Articles

In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets. Some authors require additional restrictions on the measure, as described below.

<span class="mw-page-title-main">Measure (mathematics)</span> Generalization of mass, length, area and volume

In mathematics, the concept of a measure is a generalization and formalization of geometrical measures and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations of measure are widely used in quantum physics and physics in general.

<span class="mw-page-title-main">Null set</span> Measurable set whose measure is zero

In mathematical analysis, a null set is a Lebesgue measurable set of real numbers that has measure zero. This can be characterized as a set that can be covered by a countable union of intervals of arbitrarily small total length.

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz.

In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the convergence of monotonic sequences that are also bounded. Informally, the theorems state that if a sequence is increasing and bounded above by a supremum, then the sequence will converge to the supremum; in the same way, if a sequence is decreasing and is bounded below by an infimum, it will converge to the infimum.

<span class="mw-page-title-main">Law of large numbers</span> Averages of repeated trials converge to the expected value

In probability theory, the law of large numbers (LLN) is a theorem that describes the result of performing the same experiment a large number of times. According to the law, the average of the results obtained from a large number of trials should be close to the expected value and tends to become closer to the expected value as more trials are performed.

In calculus and real analysis, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity. The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central operations of calculus—differentiation and integration. This relationship is commonly characterized in the framework of Riemann integration, but with absolute continuity it may be formulated in terms of Lebesgue integration. For real-valued functions on the real line, two interrelated notions appear: absolute continuity of functions and absolute continuity of measures. These two notions are generalized in different directions. The usual derivative of a function is related to the Radon–Nikodym derivative, or density, of a measure. We have the following chains of inclusions for functions over a compact subset of the real line:

In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.

In mathematics, the Radon–Nikodym theorem is a result in measure theory that expresses the relationship between two measures defined on the same measurable space. A measure is a set function that assigns a consistent magnitude to the measurable subsets of a measurable space. Examples of a measure include area and volume, where the subsets are sets of points; or the probability of an event, which is a subset of possible outcomes within a wider probability space.

In measure theory, Lebesgue's dominated convergence theorem provides sufficient conditions under which almost everywhere convergence of a sequence of functions implies convergence in the L1 norm. Its power and utility are two of the primary theoretical advantages of Lebesgue integration over Riemann integration.

In mathematics, the support of a measure on a measurable topological space is a precise notion of where in the space the measure "lives". It is defined to be the largest (closed) subset of for which every open neighbourhood of every point of the set has positive measure.

In mathematics, more specifically measure theory, there are various notions of the convergence of measures. For an intuitive general sense of what is meant by convergence of measures, consider a sequence of measures μn on a space, sharing a common collection of measurable sets. Such a sequence might represent an attempt to construct 'better and better' approximations to a desired measure μ that is difficult to obtain directly. The meaning of 'better and better' is subject to all the usual caveats for taking limits; for any error tolerance ε > 0 we require there be N sufficiently large for nN to ensure the 'difference' between μn and μ is smaller than ε. Various notions of convergence specify precisely what the word 'difference' should mean in that description; these notions are not equivalent to one another, and vary in strength.

Convergence in measure is either of two distinct mathematical concepts both of which generalize the concept of convergence in probability.

In mathematics, uniform integrability is an important concept in real analysis, functional analysis and measure theory, and plays a vital role in the theory of martingales.

In probability theory, a standard probability space, also called Lebesgue–Rokhlin probability space or just Lebesgue space is a probability space satisfying certain assumptions introduced by Vladimir Rokhlin in 1940. Informally, it is a probability space consisting of an interval and/or a finite or countable number of atoms.

In real analysis and measure theory, the Vitali convergence theorem, named after the Italian mathematician Giuseppe Vitali, is a generalization of the better-known dominated convergence theorem of Henri Lebesgue. It is a characterization of the convergence in Lp in terms of convergence in measure and a condition related to uniform integrability.

In mathematics, particularly measure theory, the essential range, or the set of essential values, of a function is intuitively the 'non-negligible' range of the function: It does not change between two functions that are equal almost everywhere. One way of thinking of the essential range of a function is the set on which the range of the function is 'concentrated'.

<span class="mw-page-title-main">Lebesgue integration</span> Method of integration

In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the X axis. The Lebesgue integral, named after French mathematician Henri Lebesgue, extends the integral to a larger class of functions. It also extends the domains on which these functions can be defined.

In mathematics, the Khinchin integral, also known as the Denjoy–Khinchin integral, generalized Denjoy integral or wide Denjoy integral, is one of a number of definitions of the integral of a function. It is a generalization of the Riemann and Lebesgue integrals. It is named after Aleksandr Khinchin and Arnaud Denjoy, but is not to be confused with the (narrow) Denjoy integral.

In mathematics, a filter on a set informally gives a notion of which subsets are "large". Filter quantifiers are a type of logical quantifier which, informally, say whether or not a statement is true for "most" elements of Such quantifiers are often used in combinatorics, model theory, and in other fields of mathematical logic where (ultra)filters are used.

References

  1. Weisstein, Eric W. "Almost Everywhere". mathworld.wolfram.com. Retrieved 2019-11-19.
  2. Halmos, Paul R. (1974). Measure theory. New York: Springer-Verlag. ISBN   0-387-90088-8.
  3. "Definition of almost everywhere | Dictionary.com". www.dictionary.com. Retrieved 2019-11-19.
  4. Ursell, H. D. (1932-01-01). "On the Convergence Almost Everywhere of Rademacher's Series and of the Bochnerfejér Sums of a Function almost Periodic in the Sense of Stepanoff". Proceedings of the London Mathematical Society. s2-33 (1): 457–466. doi:10.1112/plms/s2-33.1.457. ISSN   0024-6115.
  5. "Properties That Hold Almost Everywhere - Mathonline". mathonline.wikidot.com. Retrieved 2019-11-19.

Bibliography