Random measure

Last updated

In probability theory, a random measure is a measure-valued random element. [1] [2] Random measures are for example used in the theory of random processes, where they form many important point processes such as Poisson point processes and Cox processes.

Contents

Definition

Random measures can be defined as transition kernels or as random elements. Both definitions are equivalent. For the definitions, let be a separable complete metric space and let be its Borel -algebra. (The most common example of a separable complete metric space is )

As a transition kernel

A random measure is a (a.s.) locally finite transition kernel from a (abstract) probability space to . [3]

Being a transition kernel means that

is measurable from to
is a measure on

Being locally finite means that the measures

satisfy for all bounded measurable sets and for all except some -null set

In the context of stochastic processes there is the related concept of a stochastic kernel, probability kernel, Markov kernel .

As a random element

Define

and the subset of locally finite measures by

For all bounded measurable , define the mappings

from to . Let be the -algebra induced by the mappings on and the -algebra induced by the mappings on . Note that .

A random measure is a random element from to that almost surely takes values in [3] [4] [5]

Intensity measure

For a random measure , the measure satisfying

for every positive measurable function is called the intensity measure of . The intensity measure exists for every random measure and is a s-finite measure.

Supporting measure

For a random measure , the measure satisfying

for all positive measurable functions is called the supporting measure of . The supporting measure exists for all random measures and can be chosen to be finite.

Laplace transform

For a random measure , the Laplace transform is defined as

for every positive measurable function .

Basic properties

Measurability of integrals

For a random measure , the integrals

and

for positive -measurable are measurable, so they are random variables.

Uniqueness

The distribution of a random measure is uniquely determined by the distributions of

for all continuous functions with compact support on . For a fixed semiring that generates in the sense that , the distribution of a random measure is also uniquely determined by the integral over all positive simple -measurable functions . [6]

Decomposition

A measure generally might be decomposed as:

Here is a diffuse measure without atoms, while is a purely atomic measure.

Random counting measure

A random measure of the form:

where is the Dirac measure, and are random variables, is called a point process [1] [2] or random counting measure. This random measure describes the set of N particles, whose locations are given by the (generally vector valued) random variables . The diffuse component is null for a counting measure.

In the formal notation of above a random counting measure is a map from a probability space to the measurable space (,) a measurable space. Here is the space of all boundedly finite integer-valued measures (called counting measures).

The definitions of expectation measure, Laplace functional, moment measures and stationarity for random measures follow those of point processes. Random measures are useful in the description and analysis of Monte Carlo methods, such as Monte Carlo numerical quadrature and particle filters. [7]

See also

Related Research Articles

In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The pair is called a measurable space.

In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.

In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.

In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value – the value it would take “on average” over an arbitrarily large number of occurrences – given that a certain set of "conditions" is known to occur. If the random variable can take on only a finite number of values, the “conditions” are that the variable can only take on a subset of those values. More formally, in the case when the random variable is defined over a discrete probability space, the "conditions" are a partition of this probability space.

In mathematics, the total variation identifies several slightly different concepts, related to the structure of the codomain of a function or a measure. For a real-valued continuous function f, defined on an interval [a, b] ⊂ R, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation xf(x), for x ∈ [a, b]. Functions whose total variation is finite are called functions of bounded variation.

A Dynkin system, named after Eugene Dynkin is a collection of subsets of another universal set satisfying a set of axioms weaker than those of 𝜎-algebra. Dynkin systems are sometimes referred to as 𝜆-systems or d-system. These set families have applications in measure theory and probability.

In mathematics, the Gibbs measure, named after Josiah Willard Gibbs, is a probability measure frequently seen in many problems of probability theory and statistical mechanics. It is a generalization of the canonical ensemble to infinite systems. The canonical ensemble gives the probability of the system X being in state x as

In complex analysis, functional analysis and operator theory, a Bergman space, named after Stefan Bergman, is a function space of holomorphic functions in a domain D of the complex plane that are sufficiently well-behaved at the boundary that they are absolutely integrable. Specifically, for 0 < p < ∞, the Bergman space Ap(D) is the space of all holomorphic functions in D for which the p-norm is finite:

In mathematics, a π-system on a set is a collection of certain subsets of such that

In probability theory, random element is a generalization of the concept of random variable to more complicated spaces than the simple real line. The concept was introduced by Maurice Fréchet (1948) who commented that the “development of probability theory and expansion of area of its applications have led to necessity to pass from schemes where (random) outcomes of experiments can be described by number or a finite set of numbers, to schemes where outcomes of experiments represent, for example, vectors, functions, processes, fields, series, transformations, and also sets or collections of sets.”

This article discusses how information theory is related to measure theory.

In mathematics, finite-dimensional distributions are a tool in the study of measures and stochastic processes. A lot of information can be gained by studying the "projection" of a measure onto a finite-dimensional vector space.

In mathematics, uniform integrability is an important concept in real analysis, functional analysis and measure theory, and plays a vital role in the theory of martingales.

In probability theory, a standard probability space, also called Lebesgue–Rokhlin probability space or just Lebesgue space is a probability space satisfying certain assumptions introduced by Vladimir Rokhlin in 1940. Informally, it is a probability space consisting of an interval and/or a finite or countable number of atoms.

In probability theory, regular conditional probability is a concept that formalizes the notion of conditioning on the outcome of a random variable. The resulting conditional probability distribution is a parametrized family of probability measures called a Markov kernel.

In probability theory, a Markov kernel is a map that in the general theory of Markov processes plays the role that the transition matrix does in the theory of Markov processes with a finite state space.

In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and

A Markov chain on a measurable state space is a discrete-time-homogeneous Markov chain with a measurable space as state space.

In mathematics, topological recursion is a recursive definition of invariants of spectral curves. It has applications in enumerative geometry, random matrix theory, mathematical physics, string theory, knot theory.

In the theory of stochastic processes, a ν-transform is an operation that transforms a measure or a point process into a different point process. Intuitively the ν-transform randomly relocates the points of the point process, with the type of relocation being dependent on the position of each point.

References

  1. 1 2 Kallenberg, O., Random Measures, 4th edition. Academic Press, New York, London; Akademie-Verlag, Berlin (1986). ISBN   0-12-394960-2 MR 854102. An authoritative but rather difficult reference.
  2. 1 2 Jan Grandell, Point processes and random measures, Advances in Applied Probability 9 (1977) 502-526. MR 0478331 JSTOR A nice and clear introduction.
  3. 1 2 Kallenberg, Olav (2017). Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling. Vol. 77. Switzerland: Springer. p. 1. doi:10.1007/978-3-319-41598-7. ISBN   978-3-319-41596-3.
  4. Klenke, Achim (2008). Probability Theory. Berlin: Springer. p. 526. doi:10.1007/978-1-84800-048-3. ISBN   978-1-84800-047-6.
  5. Daley, D. J.; Vere-Jones, D. (2003). An Introduction to the Theory of Point Processes. Probability and its Applications. doi:10.1007/b97277. ISBN   0-387-95541-0.
  6. Kallenberg, Olav (2017). Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling. Vol. 77. Switzerland: Springer. p. 52. doi:10.1007/978-3-319-41598-7. ISBN   978-3-319-41596-3.
  7. "Crisan, D., Particle Filters: A Theoretical Perspective, in Sequential Monte Carlo in Practice, Doucet, A., de Freitas, N. and Gordon, N. (Eds), Springer, 2001, ISBN   0-387-95146-6