This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: The organization of this article needs to be reconsidered. Theorems and their proofs are placed into different sections and for some proofs it is not clear which result they are associated with.(September 2024) |
In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the good convergence behaviour of monotonic sequences, i.e. sequences that are non-increasing, or non-decreasing. In its simplest form, it says that a non-decreasing bounded-above sequence of real numbers converges to its smallest upper bound, its supremum. Likewise, a non-increasing bounded-below sequence converges to its largest lower bound, its infimum. In particular, infinite sums of non-negative numbers converge to the supremum of the partial sums if and only if the partial sums are bounded.
For sums of non-negative increasing sequences , it says that taking the sum and the supremum can be interchanged.
In more advanced mathematics the monotone convergence theorem usually refers to a fundamental result in measure theory due to Lebesgue and Beppo Levi that says that for sequences of non-negative pointwise-increasing measurable functions , taking the integral and the supremum can be interchanged with the result being finite if either one is finite.
Every bounded-above monotonically nondecreasing sequence of real numbers is convergent in the real numbers because the supremum exists and is a real number. The proposition does not apply to rational numbers because the supremum of a sequence of rational numbers may be irrational.
(A) For a non-decreasing and bounded-above sequence of real numbers
the limit exists and equals its supremum:
(B) For a non-increasing and bounded-below sequence of real numbers
the limit exists and equals its infimum:
Let be the set of values of . By assumption, is non-empty and bounded above by . By the least-upper-bound property of real numbers, exists and . Now, for every , there exists such that , since otherwise is a strictly smaller upper bound of , contradicting the definition of the supremum . Then since is non decreasing, and is an upper bound, for every , we have
Hence, by definition .
The proof of the (B) part is analogous or follows from (A) by considering .
If is a monotone sequence of real numbers, i.e., if for every or for every , then this sequence has a finite limit if and only if the sequence is bounded. [1]
There is a variant of the proposition above where we allow unbounded sequences in the extended real numbers, the real numbers with and added.
In the extended real numbers every set has a supremum (resp. infimum) which of course may be (resp. ) if the set is unbounded. An important use of the extended reals is that any set of non negative numbers has a well defined summation order independent sum
where are the upper extended non negative real numbers. For a series of non negative numbers
so this sum coincides with the sum of a series if both are defined. In particular the sum of a series of non negative numbers does not depend on the order of summation.
Let be a sequence of non-negative real numbers indexed by natural numbers and . Suppose that for all . Then [2] : 168
Since we have so .
Conversely, we can interchange sup and sum for finite sums by reverting to the limit definition, so hence .
The theorem states that if you have an infinite matrix of non-negative real numbers such that the rows are weakly increasing and each is bounded where the bounds are summable then, for each column, the non decreasing column sums are bounded hence convergent, and the limit of the column sums is equal to the sum of the "limit column" which element wise is the supremum over the row.
Consider the expansion
Now set
for and for , then with and
The right hand side is a non decreasing sequence in , therefore
The following result is a generalisation of the monotone convergence of non negative sums theorem above to the measure theoretic setting. It is a cornerstone of measure and integration theory with many applications and has Fatou's lemma and the dominated convergence theorem as direct consequence. It is due to Beppo Levi, who proved a slight generalization in 1906 of an earlier result by Henri Lebesgue. [3] [4]
Let denotes the -algebra of Borel sets on the upper extended non negative real numbers . By definition, contains the set and all Borel subsets of
Let be a measure space, and a measurable set. Let be a pointwise non-decreasing sequence of -measurable non-negative functions, i.e. each function is -measurable and for every and every ,
Then the pointwise supremum
is a -measurable function and
Remark 1. The integrals and the suprema may be finite or infinite, but the left-hand side is finite if and only if the right-hand side is.
Remark 2. Under the assumptions of the theorem,
Note that the second chain of equalities follows from monoticity of the integral (lemma 2 below). Thus we can also write the conclusion of the theorem as
with the tacit understanding that the limits are allowed to be infinite.
Remark 3. The theorem remains true if its assumptions hold -almost everywhere. In other words, it is enough that there is a null set such that the sequence non-decreases for every To see why this is true, we start with an observation that allowing the sequence to pointwise non-decrease almost everywhere causes its pointwise limit to be undefined on some null set . On that null set, may then be defined arbitrarily, e.g. as zero, or in any other way that preserves measurability. To see why this will not affect the outcome of the theorem, note that since we have, for every
provided that is -measurable. [5] : section 21.38 (These equalities follow directly from the definition of the Lebesgue integral for a non-negative function).
Remark 4. The proof below does not use any properties of the Lebesgue integral except those established here. The theorem, thus, can be used to prove other basic properties, such as linearity, pertaining to Lebesgue integration.
This proof does not rely on Fatou's lemma; however, we do explain how that lemma might be used. Those not interested in this independency of the proof may skip the intermediate results below.
We need three basic lemmas. In the proof below, we apply the monotonic property of the Lebesgue integral to non-negative functions only. Specifically (see Remark 4),
lemma 1 . let the functions be -measurable.
Proof. Denote by the set of simple -measurable functions such that everywhere on
1. Since we have hence
2. The functions where is the indicator function of , are easily seen to be measurable and . Now apply 1.
Lemma 2. Let be a measurable space. Consider a simple -measurable non-negative function . For a measurable subset , define
Then is a measure on .
Write with and measurable sets . Then
Since finite positive linear combinations of countably additive set functions are countably additive, to prove countable additivity of it suffices to prove that, the set function defined by is countably additive for all . But this follows directly from the countable additivity of .
Lemma 3. Let be a measure, and , where
is a non-decreasing chain with all its sets -measurable. Then
Set , then we decompose as a countable disjoint union of measurable sets and likewise as a finite disjoint union. Therefore , and so .
Set . Denote by the set of simple -measurable functions such that on .
Step 1. The function is –measurable, and the integral is well-defined (albeit possibly infinite) [5] : section 21.3
From we get . Hence we have to show that is -measurable. To see this, it suffices to prove that is -measurable for all , because the intervals generate the Borel sigma algebra on the extended non negative reals by complementing and taking countable intersections, complements and countable unions.
Now since the is a non decreasing sequence, if and only if for all . Since we already know that and we conclude that
Hence is a measurable set, being the countable intersection of the measurable sets .
Since the integral is well defined (but possibly infinite) as
Step 2. We have the inequality
This is equivalent to for all which follows directly from and "monotonicity of the integral" (lemma 1).
step 3 We have the reverse inequality
By the definition of integral as a supremum step 3 is equivalent to
for every . It is tempting to prove for sufficiently large, but this does not work e.g. if is itself simple and the . However, we can get ourself an "epsilon of room" to manoeuvre and avoid this problem. Step 3 is also equivalent to
for every simple function and every where for the equality we used that the left hand side of the inequality is a finite sum. This we will prove.
Given and , define
We claim the sets have the following properties:
Assuming the claim, by the definition of and "monotonicity of the Lebesgue integral" (lemma 1) we have
Hence by "Lebesgue integral of a simple function as measure" (lemma 2), and "continuity from below" (lemma 3) we get:
which we set out to prove. Thus it remains to prove the claim.
Ad 1: Write , for non-negative constants , and measurable sets , which we may assume are pairwise disjoint and with union . Then for we have if and only if so
which is measurable since the are measurable.
Ad 2: For we have so
Ad 3: Fix . If then , hence . Otherwise, and so for sufficiently large, hence .
The proof of the monotone convergence theorem is complete.
Under similar hypotheses to Beppo Levi's theorem, it is possible to relax the hypothesis of monotonicity. [6] As before, let be a measure space and . Again, will be a sequence of -measurable non-negative functions . However, we do not assume they are pointwise non-decreasing. Instead, we assume that converges for almost every , we define to be the pointwise limit of , and we assume additionally that pointwise almost everywhere for all . Then is -measurable, and exists, and
The proof can also be based on Fatou's lemma instead of a direct proof as above, because Fatou's lemma can be proved independent of the monotone convergence theorem. However the monotone convergence theorem is in some ways more primitive than Fatou's lemma. It easily follows from the monotone convergence theorem and proof of Fatou's lemma is similar and arguably slightly less natural than the proof above.
As before, measurability follows from the fact that almost everywhere. The interchange of limits and integrals is then an easy consequence of Fatou's lemma. One has by Fatou's lemma, and then, since (monotonicity), Therefore
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations of measure are widely used in quantum physics and physics in general.
In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz.
In mathematics, an infinite series of numbers is said to converge absolutely if the sum of the absolute values of the summands is finite. More precisely, a real or complex series is said to converge absolutely if for some real number Similarly, an improper integral of a function, is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if A convergent series that is not absolutely convergent is called conditionally convergent.
In probability theory, the law of large numbers (LLN) is a mathematical law that states that the average of the results obtained from a large number of independent random samples converges to the true value, if it exists. More formally, the LLN states that given a sample of independent and identically distributed values, the sample mean converges to the true mean.
In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.
In mathematics, specifically measure theory, the counting measure is an intuitive way to put a measure on any set – the "size" of a subset is taken to be the number of elements in the subset if the subset has finitely many elements, and infinity if the subset is infinite.
In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.
In mathematics, the Radon–Nikodym theorem is a result in measure theory that expresses the relationship between two measures defined on the same measurable space. A measure is a set function that assigns a consistent magnitude to the measurable subsets of a measurable space. Examples of a measure include area and volume, where the subsets are sets of points; or the probability of an event, which is a subset of possible outcomes within a wider probability space.
In mathematics, a Dirichlet series is any series of the form where s is complex, and is a complex sequence. It is a special case of general Dirichlet series.
In mathematics, the total variation identifies several slightly different concepts, related to the (local or global) structure of the codomain of a function or a measure. For a real-valued continuous function f, defined on an interval [a, b] ⊂ R, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation x ↦ f(x), for x ∈ [a, b]. Functions whose total variation is finite are called functions of bounded variation.
In mathematics, the Hahn decomposition theorem, named after the Austrian mathematician Hans Hahn, states that for any measurable space and any signed measure defined on the -algebra , there exist two -measurable sets, and , of such that:
In mathematics, more specifically measure theory, there are various notions of the convergence of measures. For an intuitive general sense of what is meant by convergence of measures, consider a sequence of measures μn on a space, sharing a common collection of measurable sets. Such a sequence might represent an attempt to construct 'better and better' approximations to a desired measure μ that is difficult to obtain directly. The meaning of 'better and better' is subject to all the usual caveats for taking limits; for any error tolerance ε > 0 we require there be N sufficiently large for n ≥ N to ensure the 'difference' between μn and μ is smaller than ε. Various notions of convergence specify precisely what the word 'difference' should mean in that description; these notions are not equivalent to one another, and vary in strength.
Convergence in measure is either of two distinct mathematical concepts both of which generalize the concept of convergence in probability.
In mathematics, uniform integrability is an important concept in real analysis, functional analysis and measure theory, and plays a vital role in the theory of martingales.
In real analysis and measure theory, the Vitali convergence theorem, named after the Italian mathematician Giuseppe Vitali, is a generalization of the better-known dominated convergence theorem of Henri Lebesgue. It is a characterization of the convergence in Lp in terms of convergence in measure and a condition related to uniform integrability.
In mathematics, a càdlàg, RCLL, or corlol function is a function defined on the real numbers that is everywhere right-continuous and has left limits everywhere. Càdlàg functions are important in the study of stochastic processes that admit jumps, unlike Brownian motion, which has continuous sample paths. The collection of càdlàg functions on a given domain is known as Skorokhod space.
Stochastic portfolio theory (SPT) is a mathematical theory for analyzing stock market structure and portfolio behavior introduced by E. Robert Fernholz in 2002. It is descriptive as opposed to normative, and is consistent with the observed behavior of actual markets. Normative assumptions, which serve as a basis for earlier theories like modern portfolio theory (MPT) and the capital asset pricing model (CAPM), are absent from SPT.
In probability theory, Kolmogorov's two-series theorem is a result about the convergence of random series. It follows from Kolmogorov's inequality and is used in one proof of the strong law of large numbers.
In mathematics, the Christ–Kiselev maximal inequality is a maximal inequality for filtrations, named for mathematicians Michael Christ and Alexander Kiselev.
This is a glossary of concepts and results in real analysis and complex analysis in mathematics.