Inner measure

Last updated

In mathematics, in particular in measure theory, an inner measure is a function on the power set of a given set, with values in the extended real numbers, satisfying some technical conditions. Intuitively, the inner measure of a set is a lower bound of the size of that set.

Contents

Definition

An inner measure is a set function

defined on all subsets of a set that satisfies the following conditions:

The inner measure induced by a measure

Let be a σ-algebra over a set and be a measure on Then the inner measure induced by is defined by

Essentially gives a lower bound of the size of any set by ensuring it is at least as big as the -measure of any of its -measurable subsets. Even though the set function is usually not a measure, shares the following properties with measures:

  1. is non-negative,
  2. If then

Measure completion

Induced inner measures are often used in combination with outer measures to extend a measure to a larger σ-algebra. If is a finite measure defined on a σ-algebra over and and are corresponding induced outer and inner measures, then the sets such that form a σ-algebra with . [1] The set function defined by

for all is a measure on known as the completion of

See also

Related Research Articles

Measure (mathematics) Generalization of mass, length, area and volume

Measure is a fundamental concept of mathematics. Measures provide a mathematical abstraction for common notions like mass, distance/length, area, volume, probability of events, and — after some adjustments — electrical charge. These seemingly distinct concepts are innately very similar and may, in many cases, be treated as mathematically indistinguishable. Measures are foundational in probability theory. Far-reaching generalizations of measure are widely used in quantum physics and physics in general.

In mathematical analysis and in probability theory, a σ-algebra on a set X is a collection of subsets of X satisfying the following conditions : (1) it includes X itself, (2) it is closed under complement, (3) it is closed under countable unions, and (4) it is closed under countable intersections. Note that (1) and (2) implies that it includes the empty subset.

In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized. This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a statement about commutative C*-algebras. See also spectral theory for a historical perspective.

In mathematics, specifically measure theory, the counting measure is an intuitive way to put a measure on any set – the "size" of a subset is taken to be the number of elements in the subset if the subset has finitely many elements, and ∞ if the subset is infinite.

Symmetric difference Subset of the elements that belong to exactly one among two sets

In mathematics, the symmetric difference of two sets, also known as the disjunctive union, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets and is .

Jensens inequality Theorem of convex functions

In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906. Given its generality, the inequality appears in many forms depending on the context, some of which are presented below. In its simplest form the inequality states that the convex transformation of a mean is less than or equal to the mean applied after convex transformation; it is a simple corollary that the opposite is true of concave transformations.

In the mathematical field of measure theory, an outer measure or exterior measure is a function defined on all subsets of a given set with values in the extended real numbers satisfying some additional technical conditions. The theory of outer measures was first introduced by Constantin Carathéodory to provide an abstract basis for the theory of measurable sets and countably additive measures. Carathéodory's work on outer measures found many applications in measure-theoretic set theory, and was used in an essential way by Hausdorff to define a dimension-like metric invariant now called Hausdorff dimension. Outer measures are commonly used in the field of geometric measure theory.

In mathematics, the total variation identifies several slightly different concepts, related to the structure of the codomain of a function or a measure. For a real-valued continuous function f, defined on an interval [a, b] ⊂ R, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation xf(x), for x ∈ [a, b]. Functions whose total variation is finite are called functions of bounded variation.

In mathematics, an additive set function is a function mapping sets to numbers, with the property that its value on a union of two disjoint sets equals the sum of its values on these sets, namely, If this additivity property holds for any two sets, then it also holds for any finite number of sets, namely, the function value on the union of k disjoint sets equals the sum of its values on the sets. Therefore, an additive set function is also called a finitely-additive set function. However, a finitely-additive set function might not have the additivity property for a union of an infinite number of sets. A σ-additive set function is a function that has the additivity property even for infinitely many sets, that is,

Mixing (mathematics)

In mathematics, mixing is an abstract concept originating from physics: the attempt to describe the irreversible thermodynamic process of mixing in the everyday world: mixing paint, mixing drinks, industrial mixing, etc.

In Bayesian probability, the Jeffreys prior, named after Sir Harold Jeffreys, is a non-informative (objective) prior distribution for a parameter space; its density function is proportional to the square root of the determinant of the Fisher information matrix:

A Dynkin system, named after Eugene Dynkin, is a collection of subsets of another universal set satisfying a set of axioms weaker than those of 𝜎-algebra. Dynkin systems are sometimes referred to as 𝜆-systems or d-system. These set families have applications in measure theory and probability.

In mathematics, the Hahn decomposition theorem, named after the Austrian mathematician Hans Hahn, states that for any measurable space and any signed measure defined on the -algebra , there exist two -measurable sets, and , of such that:

  1. and .
  2. For every such that , one has , i.e., is a positive set for .
  3. For every such that , one has , i.e., is a negative set for .

In mathematics, the concepts of essential infimum and essential supremum are related to the notions of infimum and supremum, but adapted to measure theory and functional analysis, where one often deals with statements that are not valid for all elements in a set, but rather almost everywhere, i.e., except on a set of measure zero.

In mathematics, a π-system on a set is a collection of certain subsets of such that

In mathematics, a content is a set function that is like a measure, but a content must only be finitely additive, whereas a measure must be countably additive. A content is a real function defined on a collection of subsets such that

In mathematics, a pre-measure is a function that is, in some sense, a precursor to a bona fide measure on a given space. Indeed, one of the fundamental theorems in measure theory states that a pre-measure can be extended to a measure.

In mathematics, the Pettis integral or Gelfand–Pettis integral, named after Israel M. Gelfand and Billy James Pettis, extends the definition of the Lebesgue integral to vector-valued functions on a measure space, by exploiting duality. The integral was introduced by Gelfand for the case when the measure space is an interval with Lebesgue measure. The integral is also called the weak integral in contrast to the Bochner integral, which is the strong integral.

In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and

In mathematics, lifting theory was first introduced by John von Neumann in a pioneering paper from 1931, in which he answered a question raised by Alfréd Haar. The theory was further developed by Dorothy Maharam (1958) and by Alexandra Ionescu Tulcea and Cassius Ionescu Tulcea (1961). Lifting theory was motivated to a large extent by its striking applications. Its development up to 1969 was described in a monograph of the Ionescu Tulceas. Lifting theory continued to develop since then, yielding new results and applications.

References

  1. Halmos 1950, § 14, Theorem F