In set theory in mathematics and formal logic, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. [1] For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two or more sets is called disjoint if any two distinct sets of the collection are disjoint.
This definition of disjoint sets can be extended to families of sets and to indexed families of sets. By definition, a collection of sets is called a family of sets (such as the power set, for example). In some sources this is a set of sets, while other sources allow it to be a multiset of sets, with some sets repeated. An indexed family of sets is by definition a set-valued function (that is, it is a function that assigns a set to every element in its domain) whose domain is called its index set (and elements of its domain are called indices).
There are two subtly different definitions for when a family of sets is called pairwise disjoint. According to one such definition, the family is disjoint if each two sets in the family are either identical or disjoint. This definition would allow pairwise disjoint families of sets to have repeated copies of the same set. According to an alternative definition, each two sets in the family must be disjoint; repeated copies are not allowed. The same two definitions can be applied to an indexed family of sets: according to the first definition, every two distinct indices in the family must name sets that are disjoint or identical, while according to the second, every two distinct indices must name disjoint sets. [2] For example, the family of sets { {0, 1, 2}, {3, 4, 5}, {6, 7, 8}, ... } is disjoint according to both definitions, as is the family { {..., −2, 0, 2, 4, ...}, {..., −3, −1, 1, 3, 5} } of the two parity classes of integers. However, the family with 10 members has five repetitions each of two disjoint sets, so it is pairwise disjoint under the first definition but not under the second.
Two sets are said to be almost disjoint sets if their intersection is small in some sense. For instance, two infinite sets whose intersection is a finite set may be said to be almost disjoint. [3]
In topology, there are various notions of separated sets with more strict conditions than disjointness. For instance, two sets may be considered to be separated when they have disjoint closures or disjoint neighborhoods. Similarly, in a metric space, positively separated sets are sets separated by a nonzero distance. [4]
Disjointness of two sets, or of a family of sets, may be expressed in terms of intersections of pairs of them.
Two sets A and B are disjoint if and only if their intersection is the empty set. [1] It follows from this definition that every set is disjoint from the empty set, and that the empty set is the only set that is disjoint from itself. [5]
If a collection contains at least two sets, the condition that the collection is disjoint implies that the intersection of the whole collection is empty. However, a collection of sets may have an empty intersection without being disjoint. Additionally, while a collection of less than two sets is trivially disjoint, as there are no pairs to compare, the intersection of a collection of one set is equal to that set, which may be non-empty. [2] For instance, the three sets { {1, 2}, {2, 3}, {1, 3} } have an empty intersection but are not disjoint. In fact, there are no two disjoint sets in this collection. Also the empty family of sets is pairwise disjoint. [6]
A Helly family is a system of sets within which the only subfamilies with empty intersections are the ones that are pairwise disjoint. For instance, the closed intervals of the real numbers form a Helly family: if a family of closed intervals has an empty intersection and is minimal (i.e. no subfamily of the family has an empty intersection), it must be pairwise disjoint. [7]
A partition of a set X is any collection of mutually disjoint non-empty sets whose union is X. [8] Every partition can equivalently be described by an equivalence relation, a binary relation that describes whether two elements belong to the same set in the partition. [8] Disjoint-set data structures [9] and partition refinement [10] are two techniques in computer science for efficiently maintaining partitions of a set subject to, respectively, union operations that merge two sets or refinement operations that split one set into two.
A disjoint union may mean one of two things. Most simply, it may mean the union of sets that are disjoint. [11] But if two or more sets are not already disjoint, their disjoint union may be formed by modifying the sets to make them disjoint before forming the union of the modified sets. [12] For instance two sets may be made disjoint by replacing each element by an ordered pair of the element and a binary value indicating whether it belongs to the first or second set. [13] For families of more than two sets, one may similarly replace each element by an ordered pair of the element and the index of the set that contains it. [14]
In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory equivalent to the statement that a Cartesian product of a collection of non-empty sets is non-empty. Informally put, the axiom of choice says that given any collection of sets, each containing at least one element, it is possible to construct a new set by choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family of nonempty sets, there exists an indexed set such that for every . The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem.
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces.
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number is equal to itself (reflexive). If , then (symmetric). If and , then (transitive).
Naive Set Theory is a mathematics textbook by Paul Halmos providing an undergraduate introduction to set theory. Originally published by Van Nostrand in 1960, it was reprinted in the Springer-Verlag Undergraduate Texts in Mathematics series in 1974.
In mathematics, a set is a collection of different things; these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. A set may have a finite number of elements or be an infinite set. There is a unique set with no elements, called the empty set; a set with a single element is a singleton.
In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation on some set , which satisfies the following for all and in :
This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology. For a list of terms specific to algebraic topology, see Glossary of algebraic topology.
In set theory, the union of a collection of sets is the set of all elements in the collection. It is one of the fundamental operations through which sets can be combined and related to each other. A nullary union refers to a union of zero sets and it is by definition equal to the empty set.
In mathematics, the disjoint union of the sets A and B is the set formed from the elements of A and B labelled (indexed) with the name of the set from which they come. So, an element belonging to both A and B appears twice in the disjoint union, with two different labels.
In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets and is .
In mathematics, a partition of a set is a grouping of its elements into non-empty subsets, in such a way that every element is included in exactly one subset.
In mathematics, the Lebesgue covering dimension or topological dimension of a topological space is one of several different ways of defining the dimension of the space in a topologically invariant way.
In mathematics, two sets are almost disjoint if their intersection is small in some sense; different definitions of "small" will result in different definitions of "almost disjoint".
In the mathematical field of measure theory, an outer measure or exterior measure is a function defined on all subsets of a given set with values in the extended real numbers satisfying some additional technical conditions. The theory of outer measures was first introduced by Constantin Carathéodory to provide an abstract basis for the theory of measurable sets and countably additive measures. Carathéodory's work on outer measures found many applications in measure-theoretic set theory, and was used in an essential way by Hausdorff to define a dimension-like metric invariant now called Hausdorff dimension. Outer measures are commonly used in the field of geometric measure theory.
In set theory and related branches of mathematics, a family can mean, depending upon the context, any of the following: set, indexed set, multiset, or class. A collection of subsets of a given set is called a family of subsets of , or a family of sets over More generally, a collection of any sets whatsoever is called a family of sets, set family, or a set system. Additionally, a family of sets may be defined as a function from a set , known as the index set, to , in which case the sets of the family are indexed by members of . In some contexts, a family of sets may be allowed to contain repeated copies of any given member, and in other contexts it may form a proper class.
In mathematics, particularly in combinatorics, given a family of sets, here called a collection C, a transversal (also called a cross-section) is a set containing exactly one element from each member of the collection. When the sets of the collection are mutually disjoint, each element of the transversal corresponds to exactly one member of C (the set it is a member of). If the original sets are not disjoint, there are two possibilities for the definition of a transversal:
In mathematics, a Grothendieck universe is a set U with the following properties:
In the mathematical fields of set theory and extremal combinatorics, a sunflower or -system is a collection of sets in which all possible distinct pairs of sets share the same intersection. This common intersection is called the kernel of the sunflower.
In set theory, the intersection of two sets and denoted by is the set containing all elements of that also belong to or equivalently, all elements of that also belong to
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals aimed to extend enumeration to infinite sets.