Almost disjoint sets

Last updated

In mathematics, two sets are almost disjoint [1] [2] if their intersection is small in some sense; different definitions of "small" will result in different definitions of "almost disjoint".

Contents

Definition

The most common choice is to take "small" to mean finite. In this case, two sets are almost disjoint if their intersection is finite, i.e. if

(Here, '|X|' denotes the cardinality of X, and '< ∞' means 'finite'.) For example, the closed intervals [0, 1] and [1, 2] are almost disjoint, because their intersection is the finite set {1}. However, the unit interval [0, 1] and the set of rational numbers Q are not almost disjoint, because their intersection is infinite.

This definition extends to any collection of sets. A collection of sets is pairwise almost disjoint or mutually almost disjoint if any two distinct sets in the collection are almost disjoint. Often the prefix 'pairwise' is dropped, and a pairwise almost disjoint collection is simply called "almost disjoint".

Formally, let I be an index set, and for each i in I, let Ai be a set. Then the collection of sets {Ai : i in I} is almost disjoint if for any i and j in I,

For example, the collection of all lines through the origin in R2 is almost disjoint, because any two of them only meet at the origin. If {Ai} is an almost disjoint collection consisting of more than one set, then clearly its intersection is finite:

However, the converse is not true—the intersection of the collection

is empty, but the collection is not almost disjoint; in fact, the intersection of any two distinct sets in this collection is infinite.

The possible cardinalities of a maximal almost disjoint family (commonly referred to as a MAD family) on the set of the natural numbers has been the object of intense study. [3] [2] The minimum infinite such cardinal is one of the classical cardinal characteristics of the continuum. [4] [5]

Other meanings

Sometimes "almost disjoint" is used in some other sense, or in the sense of measure theory or topological category. Here are some alternative definitions of "almost disjoint" that are sometimes used (similar definitions apply to infinite collections):

The case of κ = 1 is simply the definition of disjoint sets; the case of
is simply the definition of almost disjoint given above, where the intersection of A and B is finite.

Related Research Articles

<span class="mw-page-title-main">Cardinal number</span> Size of a possibly infinite set

In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the case of infinite sets, the infinite cardinal numbers have been introduced, which are often denoted with the Hebrew letter (aleph) marked with subscript indicating their rank among the infinite cardinals.

<span class="mw-page-title-main">Measure (mathematics)</span> Generalization of mass, length, area and volume

In mathematics, the concept of a measure is a generalization and formalization of geometrical measures and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations of measure are widely used in quantum physics and physics in general.

In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space.

<span class="mw-page-title-main">Disjoint sets</span> Sets with no element in common

In set theory in mathematics and formal logic, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two or more sets is called disjoint if any two distinct sets of the collection are disjoint.

In mathematics, a base (or basis; pl.: bases) for the topology τ of a topological space (X, τ) is a family of open subsets of X such that every open set of the topology is equal to the union of some sub-family of . For example, the set of all open intervals in the real number line is a basis for the Euclidean topology on because every open interval is an open set, and also every open subset of can be written as a union of some family of open intervals.

In general topology, a branch of mathematics, a non-empty family A of subsets of a set is said to have the finite intersection property (FIP) if the intersection over any finite subcollection of is non-empty. It has the strong finite intersection property (SFIP) if the intersection over any finite subcollection of is infinite. Sets with the finite intersection property are also called centered systems and filter subbases.

In the mathematical field of measure theory, an outer measure or exterior measure is a function defined on all subsets of a given set with values in the extended real numbers satisfying some additional technical conditions. The theory of outer measures was first introduced by Constantin Carathéodory to provide an abstract basis for the theory of measurable sets and countably additive measures. Carathéodory's work on outer measures found many applications in measure-theoretic set theory, and was used in an essential way by Hausdorff to define a dimension-like metric invariant now called Hausdorff dimension. Outer measures are commonly used in the field of geometric measure theory.

In mathematics, a non-measurable set is a set which cannot be assigned a meaningful "volume". The mathematical existence of such sets is construed to provide information about the notions of length, area and volume in formal set theory. In Zermelo–Fraenkel set theory, the axiom of choice entails that non-measurable subsets of exist.

In mathematics, a Grothendieck universe is a set U with the following properties:

  1. If x is an element of U and if y is an element of x, then y is also an element of U. (U is a transitive set.)
  2. If x and y are both elements of U, then is an element of U.
  3. If x is an element of U, then P(x), the power set of x, is also an element of U.
  4. If is a family of elements of U, and if I is an element of U, then the union is an element of U.

In mathematics, an additive set function is a function mapping sets to numbers, with the property that its value on a union of two disjoint sets equals the sum of its values on these sets, namely, If this additivity property holds for any two sets, then it also holds for any finite number of sets, namely, the function value on the union of k disjoint sets equals the sum of its values on the sets. Therefore, an additive set function is also called a finitely additive set function. However, a finitely additive set function might not have the additivity property for a union of an infinite number of sets. A σ-additive set function is a function that has the additivity property even for countably infinite many sets, that is,

A Dynkin system, named after Eugene Dynkin, is a collection of subsets of another universal set satisfying a set of axioms weaker than those of 𝜎-algebra. Dynkin systems are sometimes referred to as 𝜆-systems or d-system. These set families have applications in measure theory and probability.

In mathematics, the cylinder sets form a basis of the product topology on a product of sets; they are also a generating family of the cylinder σ-algebra.

In mathematics, there are two different notions of a ring of sets, both referring to certain families of sets.

In measure theory, Carathéodory's extension theorem states that any pre-measure defined on a given ring of subsets R of a given set Ω can be extended to a measure on the σ-ring generated by R, and this extension is unique if the pre-measure is σ-finite. Consequently, any pre-measure on a ring containing all intervals of real numbers can be extended to the Borel algebra of the set of real numbers. This is an extremely powerful result of measure theory, and leads, for example, to the Lebesgue measure.

In mathematics, a π-system on a set is a collection of certain subsets of such that

In mathematics, a positive (or signed) measure μ defined on a σ-algebra Σ of subsets of a set X is called a finite measure if μ(X) is a finite real number (rather than ∞). A set A in Σ is of finite measure if μ(A) < ∞. The measure μ is called σ-finite if X is a countable union of measurable sets each with finite measure. A set in a measure space is said to have σ-finite measure if it is a countable union of measurable sets with finite measure. A measure being σ-finite is a weaker condition than being finite, i.e. all finite measures are σ-finite but there are (many) σ-finite measures that are not finite.

In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it. Formally, is dense in if the smallest closed subset of containing is itself.

In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and

In the mathematical discipline of set theory, a cardinal characteristic of the continuum is an infinite cardinal number that may consistently lie strictly between , and the cardinality of the continuum, that is, the cardinality of the set of all real numbers. The latter cardinal is denoted or . A variety of such cardinal characteristics arise naturally, and much work has been done in determining what relations between them are provable, and constructing models of set theory for various consistent configurations of them.

In mathematics, a polyadic space is a topological space that is the image under a continuous function of a topological power of an Alexandroff one-point compactification of a discrete space.

References

  1. Kunen, K. (1980), "Set Theory; an introduction to independence proofs", North Holland, p. 47
  2. 1 2 Jech, R. (2006) "Set Theory (the third millennium edition, revised and expanded)", Springer, p. 118
  3. Eric van Douwen. The Integers and Topology. In K. Kunen and J.E. Vaughan (eds) Handbook of Set-Theoretic Topology. North-Holland, Amsterdam, 1984.
  4. Vaughan, Jerry E. (1990). "Chapter 11: Small uncountable cardinals and topology". In van Mill, Jan; Reed, George M. (eds.). Open Problems in Topology (PDF). Amsterdam: North-Holland Publishing Company. pp.  196–218. ISBN   0-444-88768-7.
  5. Blass, Andreas (January 12, 2010). "Chapter 6 : Combinatorial Cardinal Characteristics of the Continuum". In Foreman, Matthew; Kanamori, Akihiro (eds.). Handbook of Set Theory (PDF). Vol. 1. Springer. pp. 395–490. ISBN   1-4020-4843-2.