Unit interval

Last updated
The unit interval as a subset of the real line Unit-interval.svg
The unit interval as a subset of the real line

In mathematics, the unit interval is the closed interval [0,1], that is, the set of all real numbers that are greater than or equal to 0 and less than or equal to 1. It is often denoted I (capital letter I). In addition to its role in real analysis, the unit interval is used to study homotopy theory in the field of topology.

Contents

In the literature, the term "unit interval" is sometimes applied to the other shapes that an interval from 0 to 1 could take: (0,1], [0,1), and (0,1). However, the notation I is most commonly reserved for the closed interval [0,1].

Properties

The unit interval is a complete metric space, homeomorphic to the extended real number line. As a topological space, it is compact, contractible, path connected and locally path connected. The Hilbert cube is obtained by taking a topological product of countably many copies of the unit interval.

In mathematical analysis, the unit interval is a one-dimensional analytical manifold whose boundary consists of the two points 0 and 1. Its standard orientation goes from 0 to 1.

The unit interval is a totally ordered set and a complete lattice (every subset of the unit interval has a supremum and an infimum).

Cardinality

The size or cardinality of a set is the number of elements it contains.

The unit interval is a subset of the real numbers . However, it has the same size as the whole set: the cardinality of the continuum. Since the real numbers can be used to represent points along an infinitely long line, this implies that a line segment of length 1, which is a part of that line, has the same number of points as the whole line. Moreover, it has the same number of points as a square of area 1, as a cube of volume 1, and even as an unbounded n-dimensional Euclidean space (see Space filling curve).

The number of elements (either real numbers or points) in all the above-mentioned sets is uncountable, as it is strictly greater than the number of natural numbers.

Orientation

The unit interval is a curve. The open interval (0,1) is a subset of the positive real numbers and inherits an orientation from them. The orientation is reversed when the interval is entered from 1, such as in the integral used to define natural logarithm for x in the interval, thus yielding negative values for logarithm of such x. In fact, this integral is evaluated as a signed area yielding negative area over the unit interval due to reversed orientation there.

Generalizations

The interval [-1,1], with length two, demarcated by the positive and negative units, occurs frequently, such as in the range of the trigonometric functions sine and cosine and the hyperbolic function tanh. This interval may be used for the domain of inverse functions. For instance, when 𝜃 is restricted to [π/2, π/2] then is in this interval and arcsine is defined there.

Sometimes, the term "unit interval" is used to refer to objects that play a role in various branches of mathematics analogous to the role that [0,1] plays in homotopy theory. For example, in the theory of quivers, the (analogue of the) unit interval is the graph whose vertex set is and which contains a single edge e whose source is 0 and whose target is 1. One can then define a notion of homotopy between quiver homomorphisms analogous to the notion of homotopy between continuous maps.

Fuzzy logic

In logic, the unit interval [0,1] can be interpreted as a generalization of the Boolean domain {0,1}, in which case rather than only taking values 0 or 1, any value between and including 0 and 1 can be assumed. Algebraically, negation (NOT) is replaced with 1 − x; conjunction (AND) is replaced with multiplication (xy); and disjunction (OR) is defined, per De Morgan's laws, as 1 − (1 − x)(1 − y).

Interpreting these values as logical truth values yields a multi-valued logic, which forms the basis for fuzzy logic and probabilistic logic. In these interpretations, a value is interpreted as the "degree" of truth – to what extent a proposition is true, or the probability that the proposition is true.

See also

Related Research Articles

<span class="mw-page-title-main">Compact space</span> Type of mathematical space

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the extended real number linewould be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.

In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883.

<span class="mw-page-title-main">Connected space</span> Topological space that is connected

In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces.

<span class="mw-page-title-main">Homeomorphism</span> Mapping which preserves all topological properties of a given space

In the mathematical field of topology, a homeomorphism, also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same.

In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

<span class="mw-page-title-main">Open set</span> Basic subset of a topological space

In mathematics, an open set is a generalization of an open interval in the real line.

In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation. This should not be confused with a closed manifold.

In mathematics, a (real) interval is the set of all real numbers lying between two fixed endpoints with no "gaps". Each endpoint is either a real number or positive or negative infinity, indicating the interval extends without a bound. An interval can contain neither endpoint, either endpoint, or both endpoints.

<span class="mw-page-title-main">Winding number</span> Number of times a curve wraps around a point in the plane

In mathematics, the winding number or winding index of a closed curve in the plane around a given point is an integer representing the total number of times that curve travels counterclockwise around the point, i.e., the curve's number of turns. For certain open plane curves, the number of turns may be non-integer. The winding number depends on the orientation of the curve, and it is negative if the curve travels around the point clockwise.

<span class="mw-page-title-main">Homotopy</span> Continuous deformation between two continuous functions

In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic if one can be "continuously deformed" into the other, such a deformation being called a homotopy between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology.

In mathematics, an order topology is a certain topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets.

In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a point.

In mathematics, the support of a real-valued function is the subset of the function domain containing the elements which are not mapped to zero. If the domain of is a topological space, then the support of is instead defined as the smallest closed set containing all points not mapped to zero. This concept is used very widely in mathematical analysis.

In the mathematical discipline of general topology, a Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a complete metric space that has a countable dense subset. Polish spaces are so named because they were first extensively studied by Polish topologists and logicians—Sierpiński, Kuratowski, Tarski and others. However, Polish spaces are mostly studied today because they are the primary setting for descriptive set theory, including the study of Borel equivalence relations. Polish spaces are also a convenient setting for more advanced measure theory, in particular in probability theory.

<span class="mw-page-title-main">Path (topology)</span> Continuous function whose domain is a closed unit interval

In mathematics, a path in a topological space is a continuous function from the closed unit interval into

In mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers , or a subset of that contains an interval of positive length. Most real functions that are considered and studied are differentiable in some interval. The most widely considered such functions are the real functions, which are the real-valued functions of a real variable, that is, the functions of a real variable whose codomain is the set of real numbers.

In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it. Formally, is dense in if the smallest closed subset of containing is itself.

In mathematics, the set of positive real numbers, is the subset of those real numbers that are greater than zero. The non-negative real numbers, also include zero. Although the symbols and are ambiguously used for either of these, the notation or for and or for has also been widely employed, is aligned with the practice in algebra of denoting the exclusion of the zero element with a star, and should be understandable to most practicing mathematicians.

References