Line segment

Last updated
The geometric definition of a closed line segment: the intersection of all points at or to the right of A with all points at or to the left of B Segment definition.svg
The geometric definition of a closed line segment: the intersection of all points at or to the right of A with all points at or to the left of B
Historical image of 1699 - creating a line segment Fotothek df tg 0003359 Geometrie ^ Konstruktion ^ Strecke ^ Messinstrument.jpg
Historical image of 1699 - creating a line segment

In geometry, a line segment is a part of a straight line that is bounded by two distinct endpoints (its extreme points), and contains every point on the line that is between its endpoints. It is a special case of an arc , with zero curvature. The length of a line segment is given by the Euclidean distance between its endpoints. A closed line segment includes both endpoints, while an open line segment excludes both endpoints; a half-open line segment includes exactly one of the endpoints. In geometry, a line segment is often denoted using an overline (vinculum) above the symbols for the two endpoints, such as in AB. [1]

Contents

Examples of line segments include the sides of a triangle or square. More generally, when both of the segment's end points are vertices of a polygon or polyhedron, the line segment is either an edge (of that polygon or polyhedron) if they are adjacent vertices, or a diagonal. When the end points both lie on a curve (such as a circle), a line segment is called a chord (of that curve).

In real or complex vector spaces

If V is a vector space over or and L is a subset of V, then L is a line segment if L can be parameterized as

for some vectors where v is nonzero. The endpoints of L are then the vectors u and u + v.

Sometimes, one needs to distinguish between "open" and "closed" line segments. In this case, one would define a closed line segment as above, and an open line segment as a subset L that can be parametrized as

for some vectors

Equivalently, a line segment is the convex hull of two points. Thus, the line segment can be expressed as a convex combination of the segment's two end points.

In geometry, one might define point B to be between two other points A and C, if the distance |AB| added to the distance |BC| is equal to the distance |AC|. Thus in the line segment with endpoints and is the following collection of points:

Properties

In proofs

In an axiomatic treatment of geometry, the notion of betweenness is either assumed to satisfy a certain number of axioms, or defined in terms of an isometry of a line (used as a coordinate system).

Segments play an important role in other theories. For example, in a convex set , the segment that joins any two points of the set is contained in the set. This is important because it transforms some of the analysis of convex sets, to the analysis of a line segment. The segment addition postulate can be used to add congruent segment or segments with equal lengths, and consequently substitute other segments into another statement to make segments congruent.

As a degenerate ellipse

A line segment can be viewed as a degenerate case of an ellipse, in which the semiminor axis goes to zero, the foci go to the endpoints, and the eccentricity goes to one. A standard definition of an ellipse is the set of points for which the sum of a point's distances to two foci is a constant; if this constant equals the distance between the foci, the line segment is the result. A complete orbit of this ellipse traverses the line segment twice. As a degenerate orbit, this is a radial elliptic trajectory.

In other geometric shapes

In addition to appearing as the edges and diagonals of polygons and polyhedra, line segments also appear in numerous other locations relative to other geometric shapes.

Triangles

Some very frequently considered segments in a triangle to include the three altitudes (each perpendicularly connecting a side or its extension to the opposite vertex), the three medians (each connecting a side's midpoint to the opposite vertex), the perpendicular bisectors of the sides (perpendicularly connecting the midpoint of a side to one of the other sides), and the internal angle bisectors (each connecting a vertex to the opposite side). In each case, there are various equalities relating these segment lengths to others (discussed in the articles on the various types of segment), as well as various inequalities.

Other segments of interest in a triangle include those connecting various triangle centers to each other, most notably the incenter, the circumcenter, the nine-point center, the centroid and the orthocenter.

Quadrilaterals

In addition to the sides and diagonals of a quadrilateral, some important segments are the two bimedians (connecting the midpoints of opposite sides) and the four maltitudes (each perpendicularly connecting one side to the midpoint of the opposite side).

Circles and ellipses

Any straight line segment connecting two points on a circle or ellipse is called a chord. Any chord in a circle which has no longer chord is called a diameter, and any segment connecting the circle's center (the midpoint of a diameter) to a point on the circle is called a radius.

In an ellipse, the longest chord, which is also the longest diameter, is called the major axis, and a segment from the midpoint of the major axis (the ellipse's center) to either endpoint of the major axis is called a semi-major axis. Similarly, the shortest diameter of an ellipse is called the minor axis, and the segment from its midpoint (the ellipse's center) to either of its endpoints is called a semi-minor axis. The chords of an ellipse which are perpendicular to the major axis and pass through one of its foci are called the latera recta of the ellipse. The interfocal segment connects the two foci.

Directed line segment

When a line segment is given an orientation (direction) it is called a directed line segment or oriented line segment. It suggests a translation or displacement (perhaps caused by a force). The magnitude and direction are indicative of a potential change. Extending a directed line segment semi-infinitely produces a directed half-line and infinitely in both directions produces a directed line . This suggestion has been absorbed into mathematical physics through the concept of a Euclidean vector. [2] [3] The collection of all directed line segments is usually reduced by making equipollent any pair having the same length and orientation. [4] This application of an equivalence relation was introduced by Giusto Bellavitis in 1835.

Generalizations

Analogous to straight line segments above, one can also define arcs as segments of a curve.

In one-dimensional space, a ball is a line segment.

An oriented plane segment or bivector generalizes the directed line segment.

Beyond Euclidean geometry, geodesic segments play the role of line segments.

A line segment is a one-dimensional simplex ; a two-dimensional simplex is a triangle.

Types of line segments

See also

Notes

  1. "Line Segment Definition - Math Open Reference". www.mathopenref.com. Retrieved 2020-09-01.
  2. Harry F. Davis & Arthur David Snider (1988) Introduction to Vector Analysis, 5th edition, page 1, Wm. C. Brown Publishers ISBN   0-697-06814-5
  3. Matiur Rahman & Isaac Mulolani (2001) Applied Vector Analysis, pages 9 & 10, CRC Press ISBN   0-8493-1088-1
  4. Eutiquio C. Young (1978) Vector and Tensor Analysis, pages 2 & 3, Marcel Dekker ISBN   0-8247-6671-7

Related Research Articles

<span class="mw-page-title-main">Circle</span> Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter. A circle bounds a region of the plane called a disc.

<span class="mw-page-title-main">Ellipse</span> Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

<span class="mw-page-title-main">Hyperbola</span> Plane curve: conic section

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

<span class="mw-page-title-main">Parabola</span> Plane curve: conic section

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

<span class="mw-page-title-main">Triangle</span> Shape with three sides

A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called vertices, are zero-dimensional points while the sides connecting them, also called edges, are one-dimensional line segments. A triangle has three internal angles, each one bounded by a pair of adjacent edges; the sum of angles of a triangle always equals a straight angle. The triangle is a plane figure and its interior is a planar region. Sometimes an arbitrary edge is chosen to be the base, in which case the opposite vertex is called the apex; the shortest segment between the base and apex is the height. The area of a triangle equals one-half the product of height and base length.

<span class="mw-page-title-main">Perpendicular</span> Relationship between two lines that meet at a right angle (90 degrees)

In geometry, two geometric objects are perpendicular if they intersect at right angles, i.e. at an angle of 90 degrees or π/2 radians. The condition of perpendicularity may be represented graphically using the perpendicular symbol, ⟂. Perpendicular intersections can happen between two lines, between a line and a plane, and between two planes.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Bisection</span> Division of something into two equal or congruent parts

In geometry, bisection is the division of something into two equal or congruent parts. Usually it involves a bisecting line, also called a bisector. The most often considered types of bisectors are the segment bisector, a line that passes through the midpoint of a given segment, and the angle bisector, a line that passes through the apex of an angle . In three-dimensional space, bisection is usually done by a bisecting plane, also called the bisector.

<span class="mw-page-title-main">Lemniscate of Bernoulli</span> Plane algebraic curve

In geometry, the lemniscate of Bernoulli is a plane curve defined from two given points F1 and F2, known as foci, at distance 2c from each other as the locus of points P so that PF1·PF2 = c2. The curve has a shape similar to the numeral 8 and to the ∞ symbol. Its name is from lemniscatus, which is Latin for "decorated with hanging ribbons". It is a special case of the Cassini oval and is a rational algebraic curve of degree 4.

<span class="mw-page-title-main">Incenter</span> Center of the inscribed circle of a triangle

In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bisectors of the triangle cross, as the point equidistant from the triangle's sides, as the junction point of the medial axis and innermost point of the grassfire transform of the triangle, and as the center point of the inscribed circle of the triangle.

<span class="mw-page-title-main">Midpoint</span> Point on a line segment which is equidistant from both endpoints

In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment.

<span class="mw-page-title-main">Line (geometry)</span> Straight figure with zero width and depth

In geometry, a straight line, usually abbreviated line, is an infinitely long object with no width, depth, or curvature, an idealization of such physical objects as a straightedge, a taut string, or a ray of light. Lines are spaces of dimension one, which may be embedded in spaces of dimension two, three, or higher. The word line may also refer, in everyday life, to a line segment, which is a part of a line delimited by two points.

In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center.

<span class="mw-page-title-main">Concurrent lines</span> Lines which intersect at a single point

In geometry, lines in a plane or higher-dimensional space are concurrent if they intersect at a single point.

<span class="mw-page-title-main">Three-dimensional space</span> Geometric model of the physical space

In geometry, a three-dimensional space is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space. More general three-dimensional spaces are called 3-manifolds. The term may also refer colloquially to a subset of space, a three-dimensional region, a solid figure.

In geometry, collinearity of a set of points is the property of their lying on a single line. A set of points with this property is said to be collinear. In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row".

<span class="mw-page-title-main">Beltrami–Klein model</span> Model of hyperbolic geometry

In geometry, the Beltrami–Klein model, also called the projective model, Klein disk model, and the Cayley–Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit disk and lines are represented by the chords, straight line segments with ideal endpoints on the boundary sphere.

<span class="mw-page-title-main">Euclidean plane</span> Geometric model of the planar projection of the physical universe

In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted or . It is a geometric space in which two real numbers are required to determine the position of each point. It is an affine space, which includes in particular the concept of parallel lines. It has also metrical properties induced by a distance, which allows to define circles, and angle measurement.

<span class="mw-page-title-main">Conic section</span> Curve from a cone intersecting a plane

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

<span class="mw-page-title-main">Poincaré disk model</span> Model of hyperbolic geometry

In geometry, the Poincaré disk model, also called the conformal disk model, is a model of 2-dimensional hyperbolic geometry in which all points are inside the unit disk, and straight lines are either circular arcs contained within the disk that are orthogonal to the unit circle or diameters of the unit circle.

References

This article incorporates material from Line segment on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.