In geometry, a **vertex** (in plural form: **vertices** or **vertexes**), often denoted by letters such as , , , ,^{ [1] } is a point where two or more curves, lines, or edges meet. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices.^{ [2] }^{ [3] }^{ [4] }

The *vertex* of an angle is the point where two rays begin or meet, where two line segments join or meet, where two lines intersect (cross), or any appropriate combination of rays, segments and lines that result in two straight "sides" meeting at one place.^{ [5] }^{ [4] }

A vertex is a corner point of a polygon, polyhedron, or other higher-dimensional polytope, formed by the intersection of edges, faces or facets of the object.^{ [5] }

In a polygon, a vertex is called "convex" if the internal angle of the polygon (i.e., the angle formed by the two edges at the vertex with the polygon inside the angle) is less than π radians (180°, two right angles); otherwise, it is called "concave" or "reflex".^{ [6] } More generally, a vertex of a polyhedron or polytope is convex, if the intersection of the polyhedron or polytope with a sufficiently small sphere centered at the vertex is convex, and is concave otherwise.

Polytope vertices are related to vertices of graphs, in that the 1-skeleton of a polytope is a graph, the vertices of which correspond to the vertices of the polytope,^{ [7] } and in that a graph can be viewed as a 1-dimensional simplicial complex the vertices of which are the graph's vertices.

However, in graph theory, vertices may have fewer than two incident edges, which is usually not allowed for geometric vertices. There is also a connection between geometric vertices and the vertices of a curve, its points of extreme curvature: in some sense the vertices of a polygon are points of infinite curvature, and if a polygon is approximated by a smooth curve, there will be a point of extreme curvature near each polygon vertex.^{ [8] } However, a smooth curve approximation to a polygon will also have additional vertices, at the points where its curvature is minimal.

A vertex of a plane tiling or tessellation is a point where three or more tiles meet;^{ [9] } generally, but not always, the tiles of a tessellation are polygons and the vertices of the tessellation are also vertices of its tiles. More generally, a tessellation can be viewed as a kind of topological cell complex, as can the faces of a polyhedron or polytope; the vertices of other kinds of complexes such as simplicial complexes are its zero-dimensional faces.

A polygon vertex *x*_{i} of a simple polygon P is a principal polygon vertex if the diagonal [*x*_{(i − 1)}, *x*_{(i + 1)}] intersects the boundary of P only at *x*_{(i − 1)} and *x*_{(i + 1)}. There are two types of principal vertices: *ears* and *mouths*.^{ [10] }

A principal vertex *x*_{i} of a simple polygon P is called an ear if the diagonal [*x*_{(i − 1)}, *x*_{(i + 1)}] that bridges *x*_{i} lies entirely in P. (see also convex polygon) According to the two ears theorem, every simple polygon has at least two ears.^{ [11] }

A principal vertex *x*_{i} of a simple polygon P is called a mouth if the diagonal [*x*_{(i − 1)}, *x*_{(i + 1)}] lies outside the boundary of P.

Any convex polyhedron's surface has Euler characteristic

where *V* is the number of vertices, *E* is the number of edges, and *F* is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of vertices is 2 more than the excess of the number of edges over the number of faces. For example, since a cube has 12 edges and 6 faces, the formula implies that it has 8 vertices.

In computer graphics, objects are often represented as triangulated polyhedra in which the object vertices are associated not only with three spatial coordinates but also with other graphical information necessary to render the object correctly, such as colors, reflectance properties, textures, and surface normal;^{ [12] } these properties are used in rendering by a vertex shader, part of the vertex pipeline.

A **cuboctahedron** is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is the only radially equilateral convex polyhedron.

In geometry, a **cube** is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex.

In geometry, any polyhedron is associated with a second **dual** figure, where the vertices of one correspond to the faces of the other and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all are also geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron.

In geometry, an **octahedron** is a polyhedron with eight faces, twelve edges, and six vertices. The term is most commonly used to refer to the **regular** octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

In geometry, a **polyhedron** is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. The word polyhedron comes from the Classical Greek πολύεδρον, as *poly-* + *-hedron*.

In elementary geometry, a **polytope** is a geometric object with "flat" sides. It is a generalization in any number of dimensions of the three-dimensional polyhedron. Polytopes may exist in any general number of dimensions *n* as an *n*-dimensional polytope or ** n-polytope**. Flat sides mean that the sides of a (

In geometry, a **4-polytope** is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells.

In solid geometry, a **face** is a flat (planar) surface that forms part of the boundary of a solid object; a three-dimensional solid bounded exclusively by faces is a polyhedron.

In geometry, the **truncated icosidodecahedron** is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed by two or more types of regular polygon faces.

In geometry, a **diagonal** is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word *diagonal* derives from the ancient Greek διαγώνιος *diagonios*, "from angle to angle" ; it was used by both Strabo and Euclid to refer to a line connecting two vertices of a rhombus or cuboid, and later adopted into Latin as *diagonus*.

In geometry, the **Schläfli symbol** is a notation of the form {*p*,*q*,*r*,...} that defines regular polytopes and tessellations.

In geometry, a polytope is **isogonal** or **vertex-transitive** if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.

Euclidean plane **tilings by convex regular polygons** have been widely used since antiquity. The first systematic mathematical treatment was that of Kepler in his *Harmonices Mundi*.

A **convex polytope** is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary.

In Euclidean geometry, **rectification**, also known as **critical truncation** or **complete-truncation** is the process of truncating a polytope by marking the midpoints of all its edges, and cutting off its vertices at those points. The resulting polytope will be bounded by vertex figure facets and the rectified facets of the original polytope.

In geometry, a **uniform tiling** is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive.

In geometry, an **edge** is a particular type of line segment joining two vertices in a polygon, polyhedron, or higher-dimensional polytope. In a polygon, an edge is a line segment on the boundary, and is often called a **side**. In a polyhedron or more generally a polytope, an edge is a line segment where two faces meet. A segment joining two vertices while passing through the interior or exterior is not an edge but instead is called a diagonal.

In geometry, a **uniform honeycomb** or **uniform tessellation** or infinite uniform polytope, is a vertex-transitive honeycomb made from uniform polytope facets. All of its vertices are identical and there is the same combination and arrangement of faces at each vertex. Its dimension can be clarified as *n*-honeycomb for an n-dimensional honeycomb.

In geometric graph theory, a branch of mathematics, a **polyhedral graph** is the undirected graph formed from the vertices and edges of a convex polyhedron. Alternatively, in purely graph-theoretic terms, the polyhedral graphs are the 3-vertex-connected planar graphs.

- ↑ "Compendium of Mathematical Symbols".
*Math Vault*. 2020-03-01. Retrieved 2020-08-16. - ↑ Weisstein, Eric W. "Vertex".
*MathWorld*. - ↑ "Vertices, Edges and Faces".
*www.mathsisfun.com*. Retrieved 2020-08-16. - 1 2 "What Are Vertices in Math?".
*Sciencing*. Retrieved 2020-08-16. - 1 2 Heath, Thomas L. (1956).
*The Thirteen Books of Euclid's Elements*(2nd ed. [Facsimile. Original publication: Cambridge University Press, 1925] ed.). New York: Dover Publications.- (3 vols.): ISBN 0-486-60088-2 (vol. 1), ISBN 0-486-60089-0 (vol. 2), ISBN 0-486-60090-4 (vol. 3).

- ↑ Jing, Lanru; Stephansson, Ove (2007).
*Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications*. Elsevier Science. - ↑ Peter McMullen, Egon Schulte, Abstract Regular Polytopes, Cambridge University Press, 2002. ISBN 0-521-81496-0 (Page 29)
- ↑ Bobenko, Alexander I.; Schröder, Peter; Sullivan, John M.; Ziegler, Günter M. (2008).
*Discrete differential geometry*. Birkhäuser Verlag AG. ISBN 978-3-7643-8620-7. - ↑ M.V. Jaric, ed, Introduction to the Mathematics of Quasicrystals (Aperiodicity and Order, Vol 2) ISBN 0-12-040602-0, Academic Press, 1989.
- ↑ Devadoss, Satyan; O'Rourke, Joseph (2011).
*Discrete and Computational Geometry*. Princeton University Press. ISBN 978-0-691-14553-2. - ↑ Meisters, G. H. (1975), "Polygons have ears",
*The American Mathematical Monthly*,**82**: 648–651, doi:10.2307/2319703, MR 0367792 . - ↑ Christen, Martin. "Clockworkcoders Tutorials: Vertex Attributes". Khronos Group . Retrieved 26 January 2009.

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.