In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object; [1] a three-dimensional solid bounded exclusively by faces is a polyhedron . A face can be finite like a polygon or circle, or infinite like a half-plane or plane. [2]
In more technical treatments of the geometry of polyhedra and higher-dimensional polytopes, the term is also used to mean an element of any dimension of a more general polytope (in any number of dimensions). [3]
In elementary geometry, a face is a polygon [note 1] on the boundary of a polyhedron. [3] [4] Other names for a polygonal face include polyhedron side and Euclidean plane tile .
For example, any of the six squares that bound a cube is a face of the cube. Sometimes "face" is also used to refer to the 2-dimensional features of a 4-polytope. With this meaning, the 4-dimensional tesseract has 24 square faces, each sharing two of 8 cubic cells.
Polyhedron | Star polyhedron | Euclidean tiling | Hyperbolic tiling | 4-polytope |
---|---|---|---|---|
{4,3} | {5/2,5} | {4,4} | {4,5} | {4,3,3} |
The cube has 3 square faces per vertex. | The small stellated dodecahedron has 5 pentagrammic faces per vertex. | The square tiling in the Euclidean plane has 4 square faces per vertex. | The order-5 square tiling has 5 square faces per vertex. | The tesseract has 3 square faces per edge. |
Any convex polyhedron's surface has Euler characteristic
where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.
In higher-dimensional geometry, the faces of a polytope are features of all dimensions. [3] [5] [6] A face of dimension k is called a k-face. For example, the polygonal faces of an ordinary polyhedron are 2-faces. In set theory, the set of faces of a polytope includes the polytope itself and the empty set, where the empty set is for consistency given a "dimension" of −1. For any n-polytope (n-dimensional polytope), −1 ≤ k ≤ n.
For example, with this meaning, the faces of a cube comprise the cube itself (3-face), its (square) facets (2-faces), its (line segment) edges (1-faces), its (point) vertices (0-faces), and the empty set.
In some areas of mathematics, such as polyhedral combinatorics, a polytope is by definition convex. Formally, a face of a polytope P is the intersection of P with any closed halfspace whose boundary is disjoint from the interior of P. [7] From this definition it follows that the set of faces of a polytope includes the polytope itself and the empty set. [5] [6]
In other areas of mathematics, such as the theories of abstract polytopes and star polytopes, the requirement for convexity is relaxed. Abstract theory still requires that the set of faces include the polytope itself and the empty set.
An n-dimensional simplex (line segment (n = 1), triangle (n = 2), tetrahedron (n = 3), etc.), defined by n + 1 vertices, has a face for each subset of the vertices, from the empty set up through the set of all vertices. In particular, there are 2n + 1 faces in total. The number of them that are k-faces, for k ∈ {−1, 0, ..., n}, is the binomial coefficient .
There are specific names for k-faces depending on the value of k and, in some cases, how close k is to the dimensionality n of the polytope.
Vertex is the common name for a 0-face.
Edge is the common name for a 1-face.
The use of face in a context where a specific k is meant for a k-face but is not explicitly specified is commonly a 2-face.
A cell is a polyhedral element (3-face) of a 4-dimensional polytope or 3-dimensional tessellation, or higher. Cells are facets for 4-polytopes and 3-honeycombs.
Examples:
4-polytopes | 3-honeycombs | ||
---|---|---|---|
{4,3,3} | {5,3,3} | {4,3,4} | {5,3,4} |
The tesseract has 3 cubic cells (3-faces) per edge. | The 120-cell has 3 dodecahedral cells (3-faces) per edge. | The cubic honeycomb fills Euclidean 3-space with cubes, with 4 cells (3-faces) per edge. | The order-4 dodecahedral honeycomb fills 3-dimensional hyperbolic space with dodecahedra, 4 cells (3-faces) per edge. |
In higher-dimensional geometry, the facets (also called hyperfaces) [8] of a n-polytope are the (n − 1)-faces (faces of dimension one less than the polytope itself). [9] A polytope is bounded by its facets.
For example:
In related terminology, the (n − 2)-faces of an n-polytope are called ridges (also subfacets). [10] A ridge is seen as the boundary between exactly two facets of a polytope or honeycomb.
For example:
The (n − 3)-faces of an n-polytope are called peaks. A peak contains a rotational axis of facets and ridges in a regular polytope or honeycomb.
For example:
Let , where is a vector space.
A face or extreme set of is a set such that and and implies that . [11] That is, if a point lies strictly between some points , then .
An extreme point of is a point such that is a face of . [11] That is, if lies between some points , then .
An exposed face of is the subset of points of where a linear functional achieves its minimum on . Thus, if is a linear functional on and , then is an exposed face of .
An exposed point of is a point such that is an exposed face of . That is, for all .
Some authors do not include and/or among the (exposed) faces. Some authors require and/or to be convex (else the boundary of a disc is a face of the disc, as well as any subset of the boundary) or closed. Some authors require the functional to be continuous in a given vector topology.
The union of extreme sets of a set is an extreme set of .
An exposed face is a face. An exposed face of is convex if is convex.
If is a face of , then is a face of if and only if is a face of .
In geometry, a cube or regular hexahedron is a three-dimensional solid object bounded by six congruent square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It is a type of parallelepiped, with pairs of parallel opposite faces, and more specifically a rhombohedron, with congruent edges, and a rectangular cuboid, with right angles between pairs of intersecting faces and pairs of intersecting edges. It is an example of many classes of polyhedra: Platonic solid, regular polyhedron, parallelohedron, zonohedron, and plesiohedron. The dual polyhedron of a cube is the regular octahedron.
In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron.
In geometry, an octahedron is a polyhedron with eight faces. One special case is the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. Regular octahedra occur in nature as crystal structures. Many types of irregular octahedra also exist, including both convex and non-convex shapes.
In geometry, a polyhedron is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices.
In elementary geometry, a polytope is a geometric object with flat sides (faces). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions n as an n-dimensional polytope or n-polytope. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope. In this context, "flat sides" means that the sides of a (k + 1)-polytope consist of k-polytopes that may have (k – 1)-polytopes in common.
A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent regular polygons which are assembled in the same way around each vertex.
In geometry, the Schläfli symbol is a notation of the form that defines regular polytopes and tessellations.
In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. In particular, all its elements or j-faces — cells, faces and so on — are also transitive on the symmetries of the polytope, and are themselves regular polytopes of dimension j≤ n.
In geometry, a polytope or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.
In geometry, a zonohedron is a convex polyhedron that is centrally symmetric, every face of which is a polygon that is centrally symmetric. Any zonohedron may equivalently be described as the Minkowski sum of a set of line segments in three-dimensional space, or as a three-dimensional projection of a hypercube. Zonohedra were originally defined and studied by E. S. Fedorove, a Russian crystallographer. More generally, in any dimension, the Minkowski sum of line segments forms a polytope known as a zonotope.
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a general n-polytope is sliced off.
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary.
In Euclidean geometry, rectification, also known as critical truncation or complete-truncation, is the process of truncating a polytope by marking the midpoints of all its edges, and cutting off its vertices at those points. The resulting polytope will be bounded by vertex figure facets and the rectified facets of the original polytope.
In geometry, expansion is a polytope operation where facets are separated and moved radially apart, and new facets are formed at separated elements. Equivalently this operation can be imagined by keeping facets in the same position but reducing their size.
In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. Here, "vertex-transitive" means that it has symmetries taking every vertex to every other vertex; the same must also be true within each lower-dimensional face of the polytope. In two dimensions a stronger definition is used: only the regular polygons are considered as uniform, disallowing polygons that alternate between two different lengths of edges.
In geometry, a vertex is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices.
In geometry, an edge is a particular type of line segment joining two vertices in a polygon, polyhedron, or higher-dimensional polytope. In a polygon, an edge is a line segment on the boundary, and is often called a polygon side. In a polyhedron or more generally a polytope, an edge is a line segment where two faces meet. A segment joining two vertices while passing through the interior or exterior is not an edge but instead is called a diagonal.
In geometry, a uniform honeycomb or uniform tessellation or infinite uniform polytope, is a vertex-transitive honeycomb made from uniform polytope facets. All of its vertices are identical and there is the same combination and arrangement of faces at each vertex. Its dimension can be clarified as n-honeycomb for an n-dimensional honeycomb.
In graph drawing and geometric graph theory, a Tutte embedding or barycentric embedding of a simple, 3-vertex-connected, planar graph is a crossing-free straight-line embedding with the properties that the outer face is a convex polygon and that each interior vertex is at the average of its neighbors' positions. If the outer polygon is fixed, this condition on the interior vertices determines their position uniquely as the solution to a system of linear equations. Solving the equations geometrically produces a planar embedding. Tutte's spring theorem, proven by W. T. Tutte, states that this unique solution is always crossing-free, and more strongly that every face of the resulting planar embedding is convex. It is called the spring theorem because such an embedding can be found as the equilibrium position for a system of springs representing the edges of the graph.