Graduate Texts in Mathematics

Last updated

Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book.

Contents

The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level.

List of books

  1. Introduction to Axiomatic Set Theory, Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ISBN   978-1-4613-8170-9)
  2. Measure and Category – A Survey of the Analogies between Topological and Measure Spaces, John C. Oxtoby (1980, 2nd ed., ISBN   978-0-387-90508-2)
  3. Topological Vector Spaces, H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ISBN   978-0-387-98726-2)
  4. A Course in Homological Algebra, Peter Hilton, Urs Stammbach (1997, 2nd ed., ISBN   978-0-387-94823-2)
  5. Categories for the Working Mathematician , Saunders Mac Lane (1998, 2nd ed., ISBN   978-0-387-98403-2)
  6. Projective Planes, Daniel R. Hughes, Fred C. Piper, (1982, ISBN   978-3-540-90043-6)
  7. A Course in Arithmetic, Jean-Pierre Serre (1996, ISBN   978-0-387-90040-7)
  8. Axiomatic Set Theory, Gaisi Takeuti, Wilson M. Zaring, (1973, ISBN   978-3-540-90050-4)
  9. Introduction to Lie Algebras and Representation Theory, James E. Humphreys (1997, ISBN   978-0-387-90053-7)
  10. A Course in Simple-Homotopy Theory, Marshall. M. Cohen, (1973, ISBN   0-387-90056-X)
  11. Functions of One Complex Variable I, John B. Conway (1978, 2nd ed., ISBN   978-0-387-90328-6)
  12. Advanced Mathematical Analysis, Richard Beals (1973, ISBN   978-0-387-90065-0)
  13. Rings and Categories of Modules, Frank W. Anderson, Kent R. Fuller (1992, 2nd ed., ISBN   978-0-387-97845-1)
  14. Stable Mappings and Their Singularities, Martin Golubitsky, Victor Guillemin, (1974, ISBN   978-0-387-90072-8)
  15. Lectures in Functional Analysis and Operator Theory, Sterling K. Berberian, (1974, ISBN   978-0-387-90080-3)
  16. The Structure of Fields, David J. Winter, (1974, ISBN   978-3-540-90074-0)
  17. Random Processes, Murray Rosenblatt, (1974, ISBN   978-0-387-90085-8)
  18. Measure Theory, Paul R. Halmos (1974, ISBN   978-0-387-90088-9)
  19. A Hilbert Space Problem Book, Paul R. Halmos (1982, 2nd ed., ISBN   978-0-387-90685-0)
  20. Fibre Bundles, Dale Husemoller (1994, 3rd ed., ISBN   978-0-387-94087-8)
  21. Linear Algebraic Groups, James E. Humphreys (1975, ISBN   978-0-387-90108-4)
  22. An Algebraic Introduction to Mathematical Logic, Donald W. Barnes, John M. Mack (1975, ISBN   978-0-387-90109-1)
  23. Linear Algebra, Werner H. Greub (1975, ISBN   978-0-387-90110-7)
  24. Geometric Functional Analysis and Its Applications, Richard B. Holmes, (1975, ISBN   978-0-387-90136-7)
  25. Real and Abstract Analysis, Edwin Hewitt, Karl Stromberg (1975, ISBN   978-0-387-90138-1)
  26. Algebraic Theories, Ernest G. Manes, (1976, ISBN   978-3-540-90140-2)
  27. General Topology, John L. Kelley (1975, ISBN   978-0-387-90125-1)
  28. Commutative Algebra I, Oscar Zariski, Pierre Samuel (1975, ISBN   978-0-387-90089-6)
  29. Commutative Algebra II, Oscar Zariski, Pierre Samuel (1975, ISBN   978-0-387-90171-8)
  30. Lectures in Abstract Algebra I: Basic Concepts, Nathan Jacobson (1976, ISBN   978-0-387-90181-7)
  31. Lectures in Abstract Algebra II: Linear Algebra, Nathan Jacobson (1984, ISBN   978-0-387-90123-7)
  32. Lectures in Abstract Algebra III: Theory of Fields and Galois Theory, Nathan Jacobson (1976, ISBN   978-0-387-90168-8)
  33. Differential Topology, Morris W. Hirsch (1976, ISBN   978-0-387-90148-0)
  34. Principles of Random Walk, Frank Spitzer (1964, 2nd ed., ISBN   978-1-4757-4229-9)
  35. Several Complex Variables and Banach Algebras, Herbert Alexander, John Wermer (1998, 3rd ed., ISBN   978-0-387-98253-3)
  36. Linear Topological Spaces, John L. Kelley, Isaac Namioka (1982, ISBN   978-0-387-90169-5)
  37. Mathematical Logic, J. Donald Monk (1976, ISBN   978-0-387-90170-1)
  38. Several Complex Variables, H. Grauert, K. Fritzsche (1976, ISBN   978-0-387-90172-5)
  39. An Invitation to -Algebras, William Arveson (1976, ISBN   978-0-387-90176-3)
  40. Denumerable Markov Chains, John G. Kemeny, J. Laurie Snell, Anthony W. Knapp, D.S. Griffeath (1976, ISBN   978-0-387-90177-0)
  41. Modular Functions and Dirichlet Series in Number Theory, Tom M. Apostol (1989, 2nd ed., ISBN   978-0-387-97127-8)
  42. Linear Representations of Finite Groups, Jean-Pierre Serre, Leonhard L. Scott (1977, ISBN   978-0-387-90190-9)
  43. Rings of Continuous Functions, Leonard Gillman, Meyer Jerison (1976, ISBN   978-0-387-90198-5)
  44. Elementary Algebraic Geometry, Keith Kendig (1977, ISBN   978-0-387-90199-2) [1]
  45. Probability Theory I, M. Loève (1977, 4th ed, ISBN   978-0-387-90210-4)
  46. Probability Theory II, M. Loève (1978, 4th ed, ISBN   978-0-387-90262-3)
  47. Geometric Topology in Dimensions 2 and 3, Edwin E. Moise (1977, ISBN   978-0-387-90220-3)
  48. General Relativity for Mathematicians, R. K. Sachs, H. Wu (1983, ISBN   978-0-387-90218-0)
  49. Linear Geometry, K. W. Gruenberg, A. J. Weir (1977, 2nd ed., ISBN   978-0-387-90227-2)
  50. Fermat's Last Theorem: A Genetic Introduction to Algebraic Number Theory, Harold M. Edwards (2000, ISBN   978-0-387-90230-2)
  51. A Course in Differential Geometry, William Klingenberg, D. Hoffman (1983, ISBN   978-0-387-90255-5)
  52. Algebraic Geometry , Robin Hartshorne (2010, ISBN   978-1-4419-2807-8)
  53. A Course in Mathematical Logic for Mathematicians, Yu. I. Manin, Boris Zilber (2009, 2nd ed., ISBN   978-1-4419-0614-4)
  54. Combinatorics with Emphasis on the Theory of Graphs, Mark E. Watkins, Jack E. Graver (1977, ISBN   978-0-387-90245-6)
  55. Introduction to Operator Theory I: Elements of Functional Analysis , Arlen Brown, Carl Pearcy (1977, ISBN   978-0-387-90257-9)
  56. Algebraic Topology: An Introduction, William S. Massey (1977, ISBN   978-0-387-90271-5)
  57. Introduction to Knot Theory, Richard H. Crowell, Ralph H. Fox (1977, ISBN   978-0-387-90272-2)
  58. p-adic Numbers, p-adic Analysis, and Zeta-Functions, Neal Koblitz (1984, 2nd ed., ISBN   978-0-387-96017-3)
  59. Cyclotomic Fields, Serge Lang (1978, ISBN   978-0-387-90307-1) [2]
  60. Mathematical Methods of Classical Mechanics , V. I. Arnold, A. Weinstein, K. Vogtmann (1989, 2nd ed., ISBN   978-0-387-96890-2)
  61. Elements of Homotopy Theory, George W. Whitehead (1978, ISBN   978-0-387-90336-1)
  62. Fundamentals of the Theory of Groups, M. I. Kargapolov, J. I. Merzljakov (1979, ISBN   978-1-4612-9966-0)
  63. Graph Theory – An Introductory Course, Béla Bollobás (1979, ISBN   978-1-4612-9969-1)
  64. Fourier Series – A Modern Introduction Volume 1, R. E. Edwards (1979, 2nd ed., ISBN   978-1-4612-6210-7)
  65. Differential Analysis on Complex Manifolds, Raymond O. Wells, Jr. (2008, 3rd ed., ISBN   978-0-387-73891-8)
  66. Introduction to Affine Group Schemes, W. C. Waterhouse (1979, ISBN   978-1-4612-6219-0)
  67. Local Fields , Jean-Pierre Serre (1979, ISBN   978-0-387-90424-5)
  68. Linear Operators in Hilbert Spaces, Joachim Weidmann  [ de ] (1980, ISBN   978-1-4612-6029-5)
  69. Cyclotomic Fields II, Serge Lang (1980, ISBN   978-1-4684-0088-5)
  70. Singular Homology Theory, William S. Massey (1980, ISBN   978-1-4684-9233-0)
  71. Riemann Surfaces, Herschel Farkas  [ de ], Irwin Kra (1992, 2nd ed., ISBN   978-0-387-97703-4)
  72. Classical Topology and Combinatorial Group Theory, John Stillwell (1980, 2ed 1993, ISBN   978-0-3879-7970-0)
  73. Algebra, Thomas W. Hungerford (1974, ISBN   978-0-387-90518-1)
  74. Multiplicative Number Theory, Harold Davenport, Hugh Montgomery (2000, 3rd ed., ISBN   978-0-387-95097-6)
  75. Basic Theory of Algebraic Groups and Lie Algebras, G. P. Hochschild (1981, ISBN   978-1-4613-8116-7)
  76. Algebraic Geometry – An Introduction to Birational Geometry of Algebraic Varieties, Shigeru Iitaka (1982, ISBN   978-1-4613-8121-1)
  77. Lectures on the Theory of Algebraic Numbers, E. T. Hecke (1981, ISBN   978-0-387-90595-2)
  78. A Course in Universal Algebra, Burris, Stanley and Sankappanavar, H. P. (Online) (1981 ISBN   978-0-3879-0578-5)
  79. An Introduction to Ergodic Theory, Peter Walters (1982, ISBN   978-0-387-95152-2)
  80. A Course in the Theory of Groups, Derek J.S. Robinson  [ de ] (1996, 2nd ed., ISBN   978-0-387-94461-6)
  81. Lectures on Riemann Surfaces, Otto Forster (1981, ISBN   978-0-387-90617-1)
  82. Differential Forms in Algebraic Topology, Raoul Bott, Loring W. Tu (1982, ISBN   978-0-387-90613-3)
  83. Introduction to Cyclotomic Fields, Lawrence C. Washington (1997, 2nd ed., ISBN   978-0-387-94762-4)
  84. A Classical Introduction to Modern Number Theory, Kenneth Ireland, Michael Rosen (1990, 2nd ed., ISBN   978-0-387-97329-6)
  85. Fourier Series – A Modern Introduction Volume 2, R. E. Edwards (1982, 2nd ed., ISBN   978-1-4613-8158-7)
  86. Introduction to Coding Theory, J. H. van Lint (3rd ed 1998, ISBN   3-540-64133-5)
  87. Cohomology of Groups, Kenneth S. Brown (1982, ISBN   978-1-4684-9329-0)
  88. Associative Algebras, R. S. Pierce (1982, ISBN   978-1-4757-0165-4)
  89. Introduction to Algebraic and Abelian Functions, Serge Lang (1982, 2nd ed., ISBN   978-0-387-90710-9)
  90. An Introduction to Convex Polytopes, Arne Brondsted (1983, ISBN   978-1-4612-1148-8)
  91. The Geometry of Discrete Groups, Alan F. Beardon (1983, 2nd print 1995, ISBN   978-1-4612-7022-5)
  92. Sequences and Series in Banach Spaces , J. Diestel (1984, ISBN   978-1-4612-9734-5)
  93. Modern Geometry — Methods and Applications Part I: The Geometry of Surfaces, Transformation Groups, and Fields, B. A. Dubrovin, Anatoly Timofeevich Fomenko, Sergei Novikov (1992, 2nd ed., ISBN   978-0-387-97663-1)
  94. Foundations of Differentiable Manifolds and Lie Groups, Frank W. Warner (1983, ISBN   978-0-387-90894-6)
  95. Probability-1, Probability-2, Albert N. Shiryaev (2016, 2019, 3rd ed., ISBN   978-0-387-72205-4, ISBN   978-0-387-72207-8)
  96. A Course in Functional Analysis, John B. Conway (2007, 2nd ed., ISBN   978-0-387-97245-9)
  97. Introduction to Elliptic Curves and Modular Forms, Neal I. Koblitz (1993, 2nd ed., ISBN   978-0-387-97966-3)
  98. Representations of Compact Lie Groups, Theodor Bröcker  [ de ], Tammo tom Dieck (1985, ISBN   978-3-540-13678-1)
  99. Finite Reflection Groups, L.C. Grove, C.T. Benson (1985, 2nd ed., ISBN   978-0-387-96082-1)
  100. Harmonic Analysis on Semigroups – Theory of Positive Definite and Related Functions, Christian Berg, Jens Peter Reus Christensen, Paul Ressel (1984, ISBN   978-0-387-90925-7)
  101. Galois Theory, Harold M. Edwards (1984, ISBN   978-0-387-90980-6)
  102. Lie Groups, Lie Algebras, and Their Representations, V. S. Varadarajan (1984, ISBN   978-0-387-90969-1)
  103. Complex Analysis, Serge Lang (1999, 4th ed., ISBN   978-0-387-98592-3)
  104. Modern Geometry — Methods and Applications Part II: The Geometry and Topology of Manifolds, B. A. Dubrovin, Anatoly Timofeevich Fomenko, Sergei Novikov (1985, ISBN   978-0-387-96162-0)
  105. SL2(R), Serge Lang (1985, ISBN   978-0-387-96198-9)
  106. The Arithmetic of Elliptic Curves, Joseph H. Silverman (2009, 2nd ed., ISBN   978-0-387-09493-9)
  107. Applications of Lie Groups to Differential Equations, Peter J. Olver (2ed 1993, ISBN   978-1-4684-0276-6)
  108. Holomorphic Functions and Integral Representations in Several Complex Variables, R. Michael Range (1986, ISBN   978-0-387-96259-7)
  109. Univalent Functions and Teichmüller Spaces, O. Lehto (1987, ISBN   978-1-4613-8654-4)
  110. Algebraic Number Theory, Serge Lang (1994, 2nd ed., ISBN   978-0-387-94225-4)
  111. Elliptic Curves, Dale Husemöller  [ de ] (2004, 2nd ed., ISBN   978-0-387-95490-5)
  112. Elliptic Functions, Serge Lang (1987, 2nd ed., ISBN   978-0-387-96508-6)
  113. Brownian Motion and Stochastic Calculus, Ioannis Karatzas, Steven Shreve (2ed 2000, ISBN   978-0-387-97655-6)
  114. A Course in Number Theory and Cryptography, Neal Koblitz (2ed 1994, ISBN   978-1-4684-0312-1)
  115. Differential Geometry: Manifolds, Curves and Surfaces, Marcel Berger, Bernard Gostiaux (1988, ISBN   978-0-387-96626-7)
  116. Measure and Integral — Volume 1, John L. Kelley, T.P. Srinivasan (1988, ISBN   978-0-387-96633-5)
  117. Algebraic Groups and Class Fields, Jean-Pierre Serre (1988, ISBN   978-1-4612-6993-9)
  118. Analysis Now, Gert K. Pedersen (1989, ISBN   978-0-387-96788-2)
  119. An Introduction to Algebraic Topology, Joseph J. Rotman, (1988, ISBN   978-0-3879-6678-6)
  120. Weakly Differentiable Functions — Sobolev Spaces and Functions of Bounded Variation, William P. Ziemer (1989, ISBN   978-0-387-97017-2)
  121. Cyclotomic Fields I and II, Serge Lang (1990, Combined 2nd ed. ISBN   978-1-4612-6972-4) [3]
  122. Theory of Complex Functions, Reinhold Remmert (1991, ISBN   978-0-387-97195-7)
  123. Numbers, Heinz-Dieter Ebbinghaus et al. (1990, ISBN   978-0-387-97497-2)
  124. Modern Geometry — Methods and Applications Part III: Introduction to Homology Theory, B. A. Dubrovin, Anatoly Timofeevich Fomenko, Sergei Novikov (1990, ISBN   978-0-387-97271-8)
  125. Complex Variables — An Introduction, Carlos A. Berenstein, Roger Gay (1991, ISBN   978-0-387-97349-4) [4]
  126. Linear Algebraic Groups, Armand Borel (1991, ISBN   978-1-4612-6954-0)
  127. A Basic Course in Algebraic Topology, William S. Massey (1991, ISBN   978-0-3879-7430-9)
  128. Partial Differential Equations, Jeffrey Rauch (1991, ISBN   978-1-4612-6959-5)
  129. Representation Theory, William Fulton, Joe Harris (1991, ISBN   978-3-5400-0539-1)
  130. Tensor Geometry — The Geometric Viewpoint and its Uses, Christopher T. J. Dodson, Timothy Poston (1991, 2nd ed., ISBN   978-3-540-52018-4)
  131. A First Course in Noncommutative Rings, T. Y. Lam (2001, 2nd ed., ISBN   978-0-387-95183-6)
  132. Iteration of Rational Functions — Complex Analytic Dynamical Systems, Alan F. Beardon (1991, ISBN   978-0-387-95151-5)
  133. Algebraic Geometry, Joe Harris (1992, ISBN   978-0-387-97716-4)
  134. Coding and Information Theory, Steven Roman (1992, ISBN   978-0-387-97812-3)
  135. Advanced Linear Algebra, Steven Roman (2008, 3rd ed., ISBN   978-0-387-72828-5)
  136. Algebra — An Approach via Module Theory, William Adkins, Steven Weintraub (1992, ISBN   978-0-387-97839-0)
  137. Harmonic Function Theory, Sheldon Axler, Paul Bourdon, Wade Ramey (2001, 2nd ed., ISBN   978-0-387-95218-5)
  138. A Course in Computational Algebraic Number Theory, Henri Cohen (1996, ISBN   0-387-55640-0)
  139. Topology and Geometry, Glen E. Bredon (1993, ISBN   978-0-387-97926-7)
  140. Optima and Equilibria, Jean-Pierre Aubin (1998, ISBN   978-3-642-08446-1)
  141. Gröbner Bases — A Computational Approach to Commutative Algebra, Thomas Becker, Volker Weispfenning (1993, ISBN   978-0-387-97971-7)
  142. Real and Functional Analysis, Serge Lang (1993, 3rd ed., ISBN   978-0-387-94001-4)
  143. Measure Theory, J. L. Doob (1994, ISBN   978-0-387-94055-7)
  144. Noncommutative Algebra, Benson Farb, R. Keith Dennis (1993, ISBN   978-0-387-94057-1)
  145. Homology Theory — An Introduction to Algebraic Topology, James W. Vick (1994, 2nd ed., ISBN   978-0-387-94126-4)
  146. Computability — A Mathematical Sketchbook, Douglas S. Bridges (1994, ISBN   978-0-387-94174-5)
  147. Algebraic K-Theory and Its Applications, Jonathan Rosenberg (1994, ISBN   978-0-387-94248-3)
  148. An Introduction to the Theory of Groups, Joseph J. Rotman (1995, 4th ed., ISBN   978-0-387-94285-8)
  149. Foundations of Hyperbolic Manifolds, John G. Ratcliffe (2019, 3rd ed., ISBN   978-3-030-31597-9)
  150. Commutative Algebra — with a View Toward Algebraic Geometry, David Eisenbud (1995, ISBN   978-0-387-94269-8)
  151. Advanced Topics in the Arithmetic of Elliptic Curves, Joseph H. Silverman (1994, ISBN   978-0-387-94328-2) [5]
  152. Lectures on Polytopes, Günter M. Ziegler (1995, ISBN   978-0-387-94365-7)
  153. Algebraic Topology — A First Course, William Fulton (1995, ISBN   978-0-387-94327-5)
  154. An Introduction to Analysis, Arlen Brown, Carl Pearcy (1995, ISBN   978-0-387-94369-5)
  155. Quantum Groups, Christian Kassel (1995, ISBN   978-0-387-94370-1)
  156. Classical Descriptive Set Theory, Alexander S. Kechris (1995, ISBN   978-0-387-94374-9)
  157. Integration and Probability, Paul Malliavin (1995, ISBN   978-0-387-94409-8) [6]
  158. Field Theory, Steven Roman (2006, 2nd ed., ISBN   978-0-387-27677-9)
  159. Functions of One Complex Variable II, John B. Conway (1995, ISBN   978-0-387-94460-9)
  160. Differential and Riemannian Manifolds, Serge Lang (1995, ISBN   978-0-387-94338-1)
  161. Polynomials and Polynomial Inequalities, Peter Borwein, Tamas Erdelyi (1995, ISBN   978-0-387-94509-5)
  162. Groups and Representations, J. L. Alperin, Rowen B. Bell (1995, ISBN   978-0-387-94526-2)
  163. Permutation Groups, John D. Dixon, Brian Mortimer (1996, ISBN   978-0-387-94599-6)
  164. Additive Number Theory The Classical Bases, Melvyn B. Nathanson (1996, ISBN   978-0-387-94656-6)
  165. Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Melvyn B. Nathanson (1996, ISBN   978-0-387-94655-9)
  166. Differential Geometry — Cartan's Generalization of Klein's Erlangen Program, R. W. Sharpe (1997, ISBN   978-0-387-94732-7)
  167. Field and Galois Theory, Patrick Morandi (1996, ISBN   978-0-387-94753-2)
  168. Combinatorial Convexity and Algebraic Geometry , Guenter Ewald (1996, ISBN   978-1-4612-8476-5)
  169. Matrix Analysis, Rajendra Bhatia (1997, ISBN   978-0-387-94846-1)
  170. Sheaf Theory, Glen E. Bredon (1997, 2nd ed., ISBN   978-0-387-94905-5)
  171. Riemannian Geometry, Peter Petersen (2016, 3rd ed., ISBN   978-3-319-26652-7)
  172. Classical Topics in Complex Function Theory, Reinhold Remmert (1998, ISBN   978-0-387-98221-2)
  173. Graph Theory, Reinhard Diestel  [ de ] (2017, 5th ed., ISBN   978-3-662-53621-6)
  174. Foundations of Real and Abstract Analysis, Douglas S. Bridges (1998, ISBN   978-0-387-98239-7)
  175. An Introduction to Knot Theory, W. B. Raymond Lickorish (1997, ISBN   978-1-4612-6869-7)
  176. Introduction to Riemannian Manifolds, John M. Lee (2018, 2nd ed., ISBN   978-3-319-91754-2) [7]
  177. Analytic Number Theory , Donald J. Newman (1998, ISBN   978-0-387-98308-0)
  178. Nonsmooth Analysis and Control Theory, Francis H. Clarke, Yuri S. Ledyaev, Ronald J. Stern, Peter R. Wolenski (1998, ISBN   978-0-387-98336-3)
  179. Banach Algebra Techniques in Operator Theory, Ronald G. Douglas (1998, 2nd ed., ISBN   978-0-387-98377-6)
  180. A Course on Borel Sets, S. M. Srivastava (1998, ISBN   978-0-387-98412-4)
  181. Numerical Analysis, Rainer Kress (1998, ISBN   978-0-387-98408-7)
  182. Ordinary Differential Equations, Wolfgang Walter (1998, ISBN   978-0-387-98459-9)
  183. An Introduction to Banach Space Theory, Robert E. Megginson (1998, ISBN   978-0-387-98431-5)
  184. Modern Graph Theory, Béla Bollobás (1998, ISBN   978-0-387-98488-9)
  185. Using Algebraic Geometry, David A. Cox, John Little, Donal O'Shea (2005, 2nd ed., ISBN   978-0-387-20706-3)
  186. Fourier Analysis on Number Fields, Dinakar Ramakrishnan, Robert J. Valenza (1999, ISBN   978-0-387-98436-0)
  187. Moduli of Curves, Joe Harris, Ian Morrison (1998, ISBN   978-0-387-98438-4)
  188. Lectures on the Hyperreals – An Introduction to Nonstandard Analysis, Robert Goldblatt (1998, ISBN   978-0-387-98464-3)
  189. Lectures on Modules and Rings, Tsit-Yuen Lam (1999, ISBN   978-0-387-98428-5)
  190. Problems in Algebraic Number Theory, M. Ram Murty, Jody Indigo Esmonde (2005, 2nd ed., ISBN   978-0-387-22182-3)
  191. Fundamentals of Differential Geometry, Serge Lang (1999, ISBN   978-0-387-98593-0)
  192. Elements of Functional Analysis, Francis Hirsch, Gilles Lacombe (1999, ISBN   978-0-387-98524-4)
  193. Advanced Topics in Computational Number Theory, Henri Cohen (2000, ISBN   0-387-98727-4)
  194. One-Parameter Semigroups for Linear Evolution Equations, Klaus-Jochen Engel, Rainer Nagel (2000, ISBN   978-0-387-98463-6)
  195. Elementary Methods in Number Theory, Melvyn B. Nathanson (2000, ISBN   978-0-387-98912-9)
  196. Basic Homological Algebra, M. Scott Osborne (2000, ISBN   978-0-387-98934-1)
  197. The Geometry of Schemes, Eisenbud, Joe Harris (2000, ISBN   978-0-387-98638-8)
  198. A Course in p-adic Analysis, Alain M. Robert (2000, ISBN   978-0-387-98669-2)
  199. Theory of Bergman Spaces, Hakan Hedenmalm, Boris Korenblum, Kehe Zhu (2000, ISBN   978-0-387-98791-0)
  200. An Introduction to Riemann–Finsler Geometry, David Bao, Shiing-Shen Chern, Zhongmin Shen (2000, ISBN   978-1-4612-7070-6)
  201. Diophantine Geometry, Marc Hindry, Joseph H. Silverman (2000, ISBN   978-0-387-98975-4)
  202. Introduction to Topological Manifolds, John M. Lee (2011, 2nd ed., ISBN   978-1-4419-7939-1)
  203. The Symmetric Group — Representations, Combinatorial Algorithms, and Symmetric Functions, Bruce E. Sagan (2001, 2nd ed., ISBN   978-0-387-95067-9)
  204. Galois Theory, Jean-Pierre Escofier (2001, ISBN   978-0-387-98765-1)
  205. Rational Homotopy Theory, Yves Félix, Stephen Halperin, Jean-Claude Thomas (2000, ISBN   978-0-387-95068-6)
  206. Problems in Analytic Number Theory, M. Ram Murty (2007, 2nd ed., ISBN   978-0-387-95143-0)
  207. Algebraic Graph Theory, Chris Godsil, Gordon Royle (2001, ISBN   978-0-387-95241-3)
  208. Analysis for Applied Mathematics, Ward Cheney (2001, ISBN   978-0-387-95279-6)
  209. A Short Course on Spectral Theory, William Arveson (2002, ISBN   978-0-387-95300-7)
  210. Number Theory in Function Fields, Michael Rosen (2002, ISBN   978-0-387-95335-9)
  211. Algebra, Serge Lang (2002, Revised 3rd ed, ISBN   978-0-387-95385-4)
  212. Lectures on Discrete Geometry, Jiří Matoušek (2002, ISBN   978-0-387-95374-8)
  213. From Holomorphic Functions to Complex Manifolds, Klaus Fritzsche  [ de ], Hans Grauert (2002, ISBN   978-0-387-95395-3)
  214. Partial Differential Equations, Jürgen Jost, (2013, 3rd ed., ISBN   978-1-4614-4808-2)
  215. Algebraic Functions and Projective Curves, David M. Goldschmidt, (2003, ISBN   978-0-387-95432-5)
  216. Matrices — Theory and Applications, Denis Serre, (2010, 2nd ed., ISBN   978-1-4419-7682-6)
  217. Model Theory: An Introduction, David Marker, (2002, ISBN   978-0-387-98760-6)
  218. Introduction to Smooth Manifolds, John M. Lee (2012, 2nd ed., ISBN   978-1-4419-9981-8)
  219. The Arithmetic of Hyperbolic 3-Manifolds, Colin Maclachlan, Alan W. Reid, (2003, ISBN   978-0-387-98386-8)
  220. Smooth Manifolds and Observables, Jet Nestruev, (2020, 2nd ed., ISBN   978-0-387-95543-8 )
  221. Convex Polytopes , Branko Grünbaum (2003, 2nd ed., ISBN   978-0-387-40409-7)
  222. Lie Groups, Lie Algebras, and Representations – An Elementary Introduction, Brian C. Hall, (2015, 2nd ed., ISBN   978-3-319-13466-6)
  223. Fourier Analysis and its Applications, Anders Vretblad, (2003, ISBN   978-0-387-00836-3)
  224. Metric Structures in Differential Geometry, Walschap, G., (2004, ISBN   978-0-387-20430-7)
  225. Lie Groups, Daniel Bump, (2013, 2nd ed., ISBN   978-1-4614-8023-5)
  226. Spaces of Holomorphic Functions in the Unit Ball, Kehe Zhu, (2005, ISBN   978-0-387-22036-9)
  227. Combinatorial Commutative Algebra, Ezra Miller, Bernd Sturmfels, (2005, ISBN   978-0-387-22356-8)
  228. A First Course in Modular Forms, Fred Diamond, J. Shurman, (2006, ISBN   978-0-387-23229-4)
  229. The Geometry of Syzygies – A Second Course in Algebraic Geometry and Commutative Algebra, David Eisenbud (2005, ISBN   978-0-387-22215-8)
  230. An Introduction to Markov Processes, Daniel W. Stroock, (2014, 2nd ed., ISBN   978-3-540-23499-9)
  231. Combinatorics of Coxeter Groups, Anders Björner, Francisco Brenti, (2005, ISBN   978-3-540-44238-7)
  232. An Introduction to Number Theory, Everest, Graham., Ward, T., (2005, ISBN   978-1-85233-917-3)
  233. Topics in Banach Space Theory, Albiac, F., Kalton, N. J., (2016, 2nd ed., ISBN   978-3-319-31555-3)
  234. Analysis and Probability — Wavelets, Signals, Fractals, Jorgensen, P. E. T., (2006, ISBN   978-0-387-29519-0)
  235. Compact Lie Groups, M. R. Sepanski, (2007, ISBN   978-0-387-30263-8)
  236. Bounded Analytic Functions, Garnett, J., (2007, ISBN   978-0-387-33621-3)
  237. An Introduction to Operators on the Hardy–Hilbert Space, Ruben A. Martinez-Avendano, Peter Rosenthal, (2007, ISBN   978-0-387-35418-7)
  238. A Course in Enumeration, Martin Aigner, (2007, ISBN   978-3-540-39032-9)
  239. Number Theory — Volume I: Tools and Diophantine Equations, Henri Cohen, (2007, ISBN   978-0-387-49922-2)
  240. Number Theory — Volume II: Analytic and Modern Tools, Henri Cohen, (2007, ISBN   978-0-387-49893-5)
  241. The Arithmetic of Dynamical Systems, Joseph H. Silverman, (2007, ISBN   978-0-387-69903-5)
  242. Abstract Algebra, Grillet, Pierre Antoine, (2007, ISBN   978-0-387-71567-4)
  243. Topological Methods in Group Theory, Geoghegan, Ross, (2007, ISBN   978-0-387-74611-1)
  244. Graph Theory, Adrian Bondy, U.S.R. Murty, (2008, ISBN   978-1-84628-969-9)
  245. Complex Analysis – In the Spirit of Lipman Bers, Rubí E. Rodríguez, Irwin Kra, Jane P. Gilman (2013, 2nd ed., ISBN   978-1-4899-9908-5)
  246. A Course in Commutative Banach Algebras, Kaniuth, Eberhard, (2008, ISBN   978-0-387-72475-1)
  247. Braid Groups, Kassel, Christian, Turaev, Vladimir, (2008, ISBN   978-0-387-33841-5)
  248. Buildings Theory and Applications, Abramenko, Peter, Brown, Ken (2008, ISBN   978-0-387-78834-0)
  249. Classical Fourier Analysis, Loukas Grafakos (2014, 3rd ed., ISBN   978-1-4939-1193-6)
  250. Modern Fourier Analysis, Loukas Grafakos (2014, 3rd ed., ISBN   978-1-4939-1229-2)
  251. The Finite Simple Groups, Robert A. Wilson (2009, ISBN   978-1-84800-987-5)
  252. Distributions and Operators, Gerd Grubb, (2009, ISBN   978-0-387-84894-5)
  253. Elementary Functional Analysis, MacCluer, Barbara D., (2009, ISBN   978-0-387-85528-8)
  254. Algebraic Function Fields and Codes, Henning Stichtenoth  [ de ], (2009, 2nd ed., ISBN   978-3-540-76877-7)
  255. Symmetry, Representations, and Invariants, Goodman, Roe, Wallach, Nolan R., (2009, ISBN   978-0-387-79851-6)
  256. A Course in Commutative Algebra, Kemper, Gregor, (2010, ISBN   978-3-642-03544-9)
  257. Deformation Theory, Robin Hartshorne, (2010, ISBN   978-1-4419-1595-5)
  258. Foundations of Optimization in Finite Dimensions, Osman Guler, (2010, ISBN   978-0-387-34431-7)
  259. Ergodic Theory – with a view towards Number Theory, Thomas Ward, Manfred Einsiedler, (2011, ISBN   978-0-85729-020-5)
  260. Monomial Ideals, Jürgen Herzog, Hibi Takayuki(2010, ISBN   978-0-85729-105-9)
  261. Probability and Stochastics, Erhan Cinlar, (2011, ISBN   978-0-387-87858-4)
  262. Essentials of Integration Theory for Analysis, Daniel W. Stroock, (2012, ISBN   978-1-4614-1134-5)
  263. Analysis on Fock Spaces, Kehe Zhu, (2012, ISBN   978-1-4419-8800-3)
  264. Functional Analysis, Calculus of Variations and Optimal Control, Francis H. Clarke, (2013, ISBN   978-1-4471-4819-7)
  265. Unbounded Self-adjoint Operators on Hilbert Space, Konrad Schmüdgen, (2012, ISBN   978-94-007-4752-4)
  266. Calculus Without Derivatives, Jean-Paul Penot, (2012, ISBN   978-1-4614-4537-1)
  267. Quantum Theory for Mathematicians, Brian C. Hall, (2013, ISBN   978-1-4614-7115-8)
  268. Geometric Analysis of the Bergman Kernel and Metric, Krantz, Steven G., (2013, ISBN   978-1-4614-7923-9)
  269. Locally Convex Spaces, M Scott Osborne, (2014, ISBN   978-3-319-02044-0)
  270. Fundamentals of Algebraic Topology, Steven Weintraub, (2014, ISBN   978-1-4939-1843-0)
  271. Integer Programming, Michelangelo Conforti, Gérard P. Cornuéjols, Giacomo Zambelli, (2014, ISBN   978-3-319-11007-3)
  272. Operator Theoretic Aspects of Ergodic Theory, Tanja Eisner, Bálint Farkas, Markus Haase, Rainer Nagel, (2015, ISBN   978-3-319-16897-5)
  273. Homotopical Topology, Anatoly Fomenko, Dmitry Fuchs, (2016, 2nd ed., ISBN   978-3-319-23487-8)
  274. Brownian Motion, Martingales, and Stochastic Calculus, Jean-François Le Gall, (2016, ISBN   978-3-319-31088-6)
  275. Differential Geometry – Connections, Curvature, and Characteristic Classes, Loring W. Tu (2017, ISBN   978-3-319-55082-4)
  276. Functional Analysis, Spectral Theory, and Applications, Manfred Einsiedler, Thomas Ward (2017, ISBN   978-3-319-58539-0)
  277. The Moment Problem, Konrad Schmüdgen (2017, ISBN   978-3-319-64545-2)
  278. Modern Real Analysis, William P. Ziemer (2017, 2nd ed., ISBN   978-3-319-64628-2)
  279. Binomial Ideals, Jürgen Herzog, Takayuki Hibi, Hidefumi Ohsugi (2018, ISBN   978-3-319-95347-2)
  280. Introduction to Real Analysis, Christopher Heil (2019, ISBN   978-3-030-26901-2)
  281. Intersection Homology & Perverse Sheaves with Applications to Singularities, Laurenţiu G. Maxim (2019, ISBN   978-3-030-27644-7)
  282. Measure, Integration & Real Analysis, Sheldon Axler (2020, ISBN   978-3-030-33143-6)
  283. Basic Representation Theory of Algebras, Ibrahim Assem, Flávio U Coelho (2020, ISBN   978-3-030-35117-5)
  284. Spectral Theory – Basic Concepts and Applications, David Borthwick (2020, ISBN   978-3-030-38001-4)
  285. An Invitation to Unbounded Representations of ∗-Algebras on Hilbert Space, Konrad Schmüdgen (2020, ISBN   978-3-030-46365-6)
  286. Lectures on Convex Geometry, Daniel Hug, Wolfgang Weilt (2020, ISBN   978-3-030-50179-2)
  287. Explorations in Complex Functions, Richard Beals, Roderick S. C. Wong (2020, ISBN   978-3-030-54532-1)
  288. Quaternion Algebras, John Voight (2020, ISBN   978-3-030-56692-0)
  289. Ergodic Dynamics – From Basic Theory to Applications, Jane M. Hawkins (2020, ISBN   978-3-030-59242-4)
  290. Lessons in Enumerative Combinatorics, Omer Egecioglu , Adriano Garsia (2021, ISBN   978-3-030-71249-5)
  291. Mathematical Logic, Heinz-Dieter Ebbinghaus, Jörg Flum, Wolfgang Thomas (2021, 3rd ed. ISBN   978-3-030-73839-6)
  292. Random Walk, Brownian Motion and Martingales, Rabi Bhattacharya, Edward C. Waymire (2021, ISBN   978-3-030-78939-8)

See also

Notes

  1. Also published from Dover Publications as the second edition. (2015, ISBN   978-0-486-78608-7)
  2. Note that this volume of the series with volume 69 were combined as volume 121.
  3. Originally published as volumes 59 and 69 in this series.
  4. A companion volume by the same authors: Complex Analysis and Special Topics in Harmonic Analysis (1995, ISBN   978-1-4613-8445-8).
  5. This volume is subsequent to volume 106 in this series.
  6. The problems and worked-out solutions book for all the exercises: Exercises and Solutions Manual for Integration and Probability by Paul Malliavin, Gerard Letac (1995, ISBN   978-0-387-94421-0)
  7. The first edition is Riemannian Manifolds: An Introduction to Curvature.

Related Research Articles

Algebraic geometry Branch of mathematics

Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros.

Differential geometry Branch of mathematics dealing with functions and geometric structures on differentiable manifolds

Differential geometry is a mathematical discipline that uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra to study problems in geometry. The theory of plane and space curves and surfaces in the three-dimensional Euclidean space formed the basis for development of differential geometry during the 18th century and the 19th century.

Lie group Group that is also a differentiable manifold with group operations that are smooth

In mathematics, a Lie group is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract, generic concept of multiplication and the taking of inverses (division). Combining these two ideas, one obtains a continuous group where points can be multiplied together, and their inverse can be taken. If, in addition, the multiplication and taking of inverses are defined to be smooth (differentiable), one obtains a Lie group.

Topology Branch of mathematics that deals with continuous deformations

In mathematics, topology is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself.

Vector space Basic algebraic structure of linear algebra

A vector space is a set of objects called vectors, which may be added together and multiplied ("scaled") by numbers, called scalars. Scalars are often taken to be real numbers, but there are also vector spaces with scalar multiplication by complex numbers, rational numbers, or generally any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms. To specify that the scalars are real or complex numbers, the terms real vector space and complex vector space are often used.

Vladimir Arnold Russian mathematician

Vladimir Igorevich Arnold was a Soviet and Russian mathematician. While he is best known for the Kolmogorov–Arnold–Moser theorem regarding the stability of integrable systems, he made important contributions in several areas including dynamical systems theory, algebra, catastrophe theory, topology, algebraic geometry, symplectic geometry, differential equations, classical mechanics, hydrodynamics and singularity theory, including posing the ADE classification problem, since his first main result—the solution of Hilbert's thirteenth problem in 1957 at the age of 19. He co-founded two new branches of mathematics—KAM theory, and topological Galois theory.

Mathematical analysis Branch of mathematics

Analysis is the branch of mathematics dealing with limits and related theories, such as differentiation, integration, measure, infinite series, and analytic functions.

In mathematics, an embedding is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup.

Complex geometry Study of complex manifolds and several complex variables

In mathematics, complex geometry is the study of complex manifolds, complex algebraic varieties, and functions of several complex variables. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.

In mathematics, the uniformization theorem says that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. In particular it implies that every Riemann surface admits a Riemannian metric of constant curvature. For compact Riemann surfaces, those with universal cover the unit disk are precisely the hyperbolic surfaces of genus greater than 1, all with non-abelian fundamental group; those with universal cover the complex plane are the Riemann surfaces of genus 1, namely the complex tori or elliptic curves with fundamental group Z2; and those with universal cover the Riemann sphere are those of genus zero, namely the Riemann sphere itself, with trivial fundamental group.

Information geometry Field that applies the techniques of differential geometry to study probability theory and statistics.

Information geometry is an interdisciplinary field that applies the techniques of differential geometry to study probability theory and statistics. It studies statistical manifolds, which are Riemannian manifolds whose points correspond to probability distributions.

Serge Lang French American mathematician

Serge Lang was a French-American mathematician and activist who taught at Yale University for most of his career. He is known for his work in number theory and for his mathematics textbooks, including the influential Algebra. He received the Frank Nelson Cole Prize in 1960 and was a member of the Bourbaki group.

Manifold Topological space that locally resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or n-manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of n-dimensional Euclidean space.

<i>Calculus on Manifolds</i> (book) book by Michael Spivak

Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus (1965) by Michael Spivak is a brief, rigorous, and modern textbook of multivariable calculus, differential forms, and integration on manifolds for advanced undergraduates.

Geometric analysis

Geometric analysis is a mathematical discipline where tools from differential equations, especially elliptic partial differential equations are used to establish new results in differential geometry and differential topology. The use of linear elliptic PDEs dates at least as far back as Hodge theory. More recently, it refers largely to the use of nonlinear partial differential equations to study geometric and topological properties of spaces, such as submanifolds of Euclidean space, Riemannian manifolds, and symplectic manifolds. This approach dates back to the work by Tibor Radó and Jesse Douglas on minimal surfaces, John Forbes Nash Jr. on isometric embeddings of Riemannian manifolds into Euclidean space, work by Louis Nirenberg on the Minkowski problem and the Weyl problem, and work by Aleksandr Danilovich Aleksandrov and Aleksei Pogorelov on convex hypersurfaces. In the 1980s fundamental contributions by Karen Uhlenbeck, Clifford Taubes, Shing-Tung Yau, Richard Schoen, and Richard Hamilton launched a particularly exciting and productive era of geometric analysis that continues to this day. A celebrated achievement was the solution to the Poincaré conjecture by Grigori Perelman, completing a program initiated and largely carried out by Richard Hamilton.

Immersion (mathematics) Differentiable function whose derivative is everywhere injective

In mathematics, an immersion is a differentiable function between differentiable manifolds whose derivative is everywhere injective. Explicitly, f : MN is an immersion if

Undergraduate Texts in Mathematics (UTM) is a series of undergraduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are small yellow books of a standard size.

Graduate Studies in Mathematics (GSM) is a series of graduate-level textbooks in mathematics published by the American Mathematical Society (AMS). The books in this series are published in hardcover and e-book formats.

Geometry Branch of mathematics

Geometry is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space that are related with distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a geometer.