Undergraduate Texts in Mathematics

Last updated

Undergraduate Texts in Mathematics (UTM) ( ISSN   0172-6056) is a series of undergraduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are small yellow books of a standard size.

Contents

The books in this series tend to be written at a more elementary level than the similar Graduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level.

There is no Springer-Verlag numbering of the books like in the Graduate Texts in Mathematics series. The books are numbered here by year of publication.

List of books

  1. Halmos, Paul R. (1974). Finite-Dimensional Vector Spaces. ISBN   978-0-387-90093-3.
  2. Halmos, Paul R. (1974). Lectures on Boolean Algebras. ISBN   978-0-387-90094-0.
  3. Halmos, Paul R. (1974). Naive Set Theory . ISBN   978-0-387-90092-6.
  4. Martin, George E. (1975). The Foundations of Geometry and the Non-Euclidean Plane. ISBN   978-1-4612-5727-1.
  5. Kemeny, John G.; Snell, J. Laurie (1976). Finite Markov Chains: With a New Appendix: "Generalization of a Fundamental Matrix". ISBN   978-0-387-90192-3.
  6. Singer, I. M.; Thorpe, J. A. (1976). Lecture Notes on Elementary Topology and Geometry. ISBN   978-0-387-90202-9.
  7. Apostol, Tom M. (1976). Introduction to Analytic Number Theory. ISBN   978-0-387-90163-3.
  8. Sigler, L. E. (1976). Algebra. ISBN   978-0-387-90195-4.
  9. Fleming, Wendell (1977). Functions of Several Variables . ISBN   978-0-387-90206-7.
  10. Croom, F. H. (1978). Basic Concepts of Algebraic Topology. ISBN   978-0-387-90288-3.
  11. LeCuyer, Edward J. (1978). Introduction to College Mathematics with A Programming Language. ISBN   978-0-387-90280-7.
  12. Duda, E.; Whyburn, G. (1979). Dynamic Topology. ISBN   978-0-387-90358-3.
  13. Jantosciak, J.; Prenowitz, W. (1979). Join Geometries: A Theory of Convex Sets and Linear Geometry . ISBN   978-0-387-90340-8.
  14. Malitz, Jerome (1979). Introduction to Mathematical Logic: Set Theory – Computable Functions – Model Theory. ISBN   978-0-387-90346-0.
  15. Wilson, R. L. (1979). Much Ado About Calculus: A Modern Treatment with Applications Prepared for Use with the Computer . ISBN   978-0-387-90347-7.
  16. Thorpe, John A. (1979). Elementary Topics in Differential Geometry. doi:10.1007/978-1-4612-6153-7. ISBN   978-0-387-90357-6.
  17. Franklin, Joel (1980). Methods of Mathematical Economics: Linear and Nonlinear Programming. Fixed-Point Theorems . ISBN   978-0-387-90481-8.
  18. Macki, Jack; Strauss, Aaron (1981). Introduction to Optimal Control Theory. ISBN   978-0-387-90624-9.
  19. Foulds, L. R. (1981). Optimization Techniques: An Introduction. ISBN   978-0-387-90586-0.
  20. Fischer, E. (1982). Intermediate Real Analysis. ISBN   978-0-387-90721-5.
  21. Martin, George E. (1982). Transformation Geometry: An Introduction to Symmetry . ISBN   978-0-387-90636-2.
  22. Martin, George E. (1983). The Foundations of Geometry and the Non-Euclidean Plane . ISBN   978-0-387-90694-2.
  23. Owen, David R. (1983). A First Course in the Mathematical Foundations of Thermodynamics. ISBN   978-0-387-90897-7.
  24. Smith, K. T. (1983). Primer of Modern Analysis: Directions for Knowing All Dark Things, Rhind Papyrus, 1800 B.C. ISBN   978-0-387-90797-0.
  25. Armstrong, M. A. (1983). Basic Topology. doi:10.1007/978-1-4757-1793-8. ISBN   978-0-387-90839-7.
  26. Dixmier, Jacques (1984). General Topology . ISBN   0-387-90972-9.
  27. Morrey, Charles B. Jr.; Protter, Murray H. (1984). Intermediate Calculus. ISBN   978-0-387-96058-6.
  28. Curtis, Charles W. (1984). Linear Algebra: An Introductory Approach. ISBN   978-0-387-90992-9.
  29. Driver, R.D. (1984). Why Math? . ISBN   978-0-387-90973-8.
  30. Foulds, L. R. (1984). Combinatorial Optimization for Undergraduates. ISBN   978-0-387-90977-6.
  31. Jänich, Klaus (1984). Topology. ISBN   978-0-387-90892-2.
  32. Bühler, W. K.; Cornell, G.; Opolka, H.; Scharlau, W. (1985). From Fermat to Minkowski: Lectures on the Theory of Numbers and Its Historical Development. ISBN   978-0-387-90942-4.
  33. Marsden, Jerrold; Weinstein, Alan (1985). Calculus I. ISBN   978-0-387-90974-5.
  34. Marsden, Jerrold; Weinstein, Alan (1985). Calculus II. ISBN   978-0-387-90975-2.
  35. Marsden, Jerrold; Weinstein, Alan (1985). Calculus III. ISBN   978-0-387-90985-1.
  36. Lang, Serge (1986). Introduction to Linear Algebra (2nd ed.). ISBN   978-0-387-96205-4.
  37. Stanton, Dennis; White, Dennis (1986). Constructive Combinatorics . ISBN   978-0-387-96347-1.
  38. Klambauer, Gabriel (1986). Aspects of Calculus . ISBN   978-0-387-96274-0.
  39. Lang, Serge (1986). A First Course in Calculus (5th ed.). doi:10.1007/978-1-4419-8532-3. ISBN   978-0-387-96201-6.
  40. James, I. M. (1987). Topological and Uniform Spaces . ISBN   978-0-387-96466-9.
  41. Lang, Serge (1987). Calculus of Several Variables. ISBN   978-0-387-96405-8.
  42. Lang, Serge (1987). Linear Algebra (3rd ed.). ISBN   978-0-387-96412-6.
  43. Peressini, Anthony L.; Sullivan, Francis E.; Uhl, J.J. Jr. (1988). The Mathematics of Nonlinear Programming. ISBN   978-0-387-96614-4.
  44. Samuel, Pierre (1988). Projective Geometry . ISBN   978-0-387-96752-3.
  45. Armstrong, Mark A. (1988). Groups and Symmetry . doi:10.1007/978-1-4757-4034-9. ISBN   978-0-387-96675-5.
  46. Brémaud, Pierre (1988). An Introduction to Probabilistic Modeling. doi:10.1007/978-1-4612-1046-7. ISBN   978-0-387-96460-7.
  47. Bressoud, David M. (1989). Factorization and Primality Testing . doi:10.1007/978-1-4612-4544-5. ISBN   978-0-387-97040-0.
  48. Brickman, Louis (1989). Mathematical Introduction to Linear Programming and Game Theory . doi:10.1007/978-1-4612-4540-7. ISBN   978-0-387-96931-2.
  49. Strayer, James K. (1989). Linear Programming and Its Applications . doi:10.1007/978-1-4612-1009-2. ISBN   978-0-387-96930-5.
  50. Flanigan, Francis J.; Kazdan, Jerry L. (1990). Calculus Two: Linear and Nonlinear Functions (2nd ed.). ISBN   978-0-387-97388-3.
  51. Iooss, Gérard; Joseph, Daniel D. (1990). Elementary Stability and Bifurcation Theory (2nd ed.). doi:10.1007/978-1-4612-0997-3. ISBN   978-0-387-97068-4.
  52. Hoffmann, Karl-Heinz; Hämmerlin, Günther (1991). Numerical Mathematics. doi:10.1007/978-1-4612-4442-4. ISBN   978-0-387-97494-1.
  53. Morrey, Charles B. Jr.; Protter, Murray H. (1991). A First Course in Real Analysis (2nd ed.). doi:10.1007/978-1-4419-8744-0. ISBN   978-0-387-97437-8.
  54. Bressoud, David M. (1991). Second Year Calculus: From Celestial Mechanics to Special Relativity . doi:10.1007/978-1-4612-0959-1. ISBN   978-0-387-97606-8.
  55. Millman, Richard S.; Parker, George D. (1991). Geometry: A Metric Approach with Models (2nd ed.). ISBN   978-0-387-97412-5.
  56. Palka, Bruce P. (1991). An Introduction to Complex Function Theory. ISBN   978-0-387-97427-9.
  57. Banchoff, Thomas; Wermer, John (1992). Linear Algebra Through Geometry (2nd ed.). doi:10.1007/978-1-4612-4390-8. ISBN   978-0-387-97586-3.
  58. Devlin, Keith (1993). The Joy of Sets: Fundamentals of Contemporary Set Theory (2nd ed.). doi:10.1007/978-1-4612-0903-4. ISBN   978-0-387-94094-6.
  59. Kinsey, L. Christine (1993). Topology of Surfaces . doi:10.1007/978-1-4612-0899-0. ISBN   978-0-387-94102-8.
  60. Valenza, Robert J. (1993). Linear Algebra: An Introduction to Abstract Mathematics. doi:10.1007/978-1-4612-0901-0. ISBN   978-0-387-94099-1.
  61. Ebbinghaus, H. -D.; Flum, J.; Thomas, W. (1994). Mathematical Logic (2nd ed.). doi:10.1007/978-1-4757-2355-7. ISBN   978-0-387-94258-2.
  62. Berberian, Sterling K. (1994). A First Course in Real Analysis. doi:10.1007/978-1-4419-8548-4. ISBN   978-0-387-94217-9.
  63. Jänich, Klaus (1994). Linear Algebra . doi:10.1007/978-1-4612-4298-7. ISBN   978-0-387-94128-8.
  64. Pedrick, George (1994). A First Course in Analysis . doi:10.1007/978-1-4419-8554-5. ISBN   978-0-387-94108-0.
  65. Stillwell, John (1994). Elements of Algebra: Geometry, Numbers, Equations. doi:10.1007/978-1-4757-3976-3. ISBN   978-0-387-94290-2.
  66. Anglin, W.S. (1994). Mathematics: A Concise History and Philosophy. doi:10.1007/978-1-4612-0875-4. ISBN   978-0-387-94280-3.
  67. Simmonds, James G. (1994). A Brief on Tensor Analysis (2nd ed.). doi:10.1007/978-1-4419-8522-4. ISBN   978-0-387-94088-5.
  68. Anglin, W.S.; Lambek, J. (1995). The Heritage of Thales. ISBN   978-0-387-94544-6.
  69. Isaac, Richard (1995). The Pleasures of Probability. ISBN   978-0-387-94415-9.
  70. Exner, George R. (1996). An Accompaniment to Higher Mathematics. doi:10.1007/978-1-4612-3998-7. ISBN   978-0-387-94617-7.
  71. Troutman, John L. (1996). Variational Calculus and Optimal Control: Optimization with Elementary Convexity (2nd ed.). doi:10.1007/978-1-4612-0737-5. ISBN   978-0-387-94511-8.
  72. Browder, Andrew (1996). Mathematical Analysis: An Introduction. doi:10.1007/978-1-4612-0715-3. ISBN   978-0-387-94614-6.
  73. Buskes, Gerard; Rooij, Arnoud Van (1997). Topological Spaces: From Distance to Neighborhood. doi:10.1007/978-1-4612-0665-1. ISBN   978-0-387-94994-9.
  74. Fine, Benjamin; Rosenberger, Gerhard (1997). The Fundamental Theorem of Algebra. doi:10.1007/978-1-4612-1928-6. ISBN   978-0-387-94657-3.
  75. Beardon, Alan F. (1997). Limits: A New Approach to Real Analysis. doi:10.1007/978-1-4612-0697-2. ISBN   978-0-387-98274-8.
  76. Gordon, Hugh (1997). Discrete Probability. doi:10.1007/978-1-4612-1966-8. ISBN   978-0-387-98227-4.
  77. Roman, Steven (1997). Introduction to Coding and Information Theory. ISBN   978-0-387-94704-4.
  78. Sethuraman, Bharath (1997). Rings, Fields, and Vector Spaces: An Introduction to Abstract Algebra via Geometric Constructibility . doi:10.1007/978-1-4757-2700-5. ISBN   978-0-387-94848-5.
  79. Lang, Serge (1997). Undergraduate Analysis (2nd ed.). doi:10.1007/978-1-4757-2698-5. ISBN   978-0-387-94841-6.
  80. Hilton, Peter; Holton, Derek; Pedersen, Jean (1997). Mathematical Reflections: In a Room with Many Mirrors . doi:10.1007/978-1-4612-1932-3. ISBN   978-0-387-94770-9.
  81. Martin, George E. (1998). Geometric Constructions. doi:10.1007/978-1-4612-0629-3. ISBN   978-0-387-98276-2.
  82. Protter, Murray H. (1998). Basic Elements of Real Analysis. doi:10.1007/b98884. ISBN   978-0-387-98479-7.
  83. Priestley, W. M. (1998). Calculus: A Liberal Art (2nd ed.). doi:10.1007/978-1-4612-1658-2. ISBN   978-0-387-98379-0.
  84. Singer, David A. (1998). Geometry: Plane and Fancy . doi:10.1007/978-1-4612-0607-1. ISBN   978-0-387-98306-6.
  85. Smith, Larry (1998). Linear Algebra (3rd ed.). doi:10.1007/978-1-4612-1670-4. ISBN   978-0-387-98455-1.
  86. Lidl, Rudolf; Pilz, Günter (1998). Applied Abstract Algebra (2nd ed.). doi:10.1007/978-1-4757-2941-2. ISBN   978-0-387-98290-8.
  87. Stillwell, John (1998). Numbers and Geometry. doi:10.1007/978-1-4612-0687-3. ISBN   978-0-387-98289-2.
  88. Laubenbacher, Reinhard; Pengelley, David (1999). Mathematical Expeditions: Chronicles by the Explorers. ISBN   978-0-387-98434-6.
  89. Frazier, Michael W. (1999). An Introduction to Wavelets Through Linear Algebra. ISBN   978-0-387-98639-5.
  90. Schiff, Joel L. (1999). The Laplace Transform: Theory and Applications. ISBN   978-0-387-98698-2.
  91. Brunt, B. van; Carter, M. (2000). The Lebesgue-Stieltjes Integral: A Practical Introduction. doi:10.1007/978-1-4612-1174-7. ISBN   978-0-387-95012-9.
  92. Exner, George R. (2000). Inside Calculus. doi:10.1007/b97700. ISBN   978-0-387-98932-7.
  93. Hartshorne, Robin (2000). Geometry: Euclid and Beyond. doi:10.1007/978-0-387-22676-7. ISBN   978-0-387-98650-0.
  94. Callahan, James J. (2000). The Geometry of Spacetime: An Introduction to Special and General Relativity. doi:10.1007/978-1-4757-6736-0. ISBN   978-0-387-98641-8.
  95. Cederberg, Judith N. (2001). A Course in Modern Geometries (2nd ed.). doi:10.1007/978-1-4757-3490-4. ISBN   978-0-387-98972-3.
  96. Gamelin, Theodore W. (2001). Complex Analysis. doi:10.1007/978-0-387-21607-2. ISBN   978-0-387-95093-8.
  97. Jänich, Klaus (2001). Vector Analysis. doi:10.1007/978-1-4757-3478-2. ISBN   978-0-387-98649-4.
  98. Martin, George E. (2001). Counting: The Art of Enumerative Combinatorics. doi:10.1007/978-1-4757-4878-9. ISBN   978-0-387-95225-3.
  99. Hilton, Peter; Holton, Derek; Pedersen, Jean (2002). Mathematical Vistas: From a Room with Many Windows . doi:10.1007/978-1-4757-3681-6. ISBN   978-0-387-95064-8.
  100. Saxe, Karen (2002). Beginning Functional Analysis. doi:10.1007/978-1-4757-3687-8. ISBN   978-0-387-95224-6.
  101. Lang, Serge (2002). Short Calculus: The Original Edition of "A First Course in Calculus". doi:10.1007/978-1-4613-0077-9. ISBN   978-0-387-95327-4.
  102. Estep, Donald (2002). Practical Analysis in One Variable. doi:10.1007/b97698. ISBN   978-0-387-95484-4.
  103. Toth, Gabor (2002). Glimpses of Algebra and Geometry (2nd ed.). doi:10.1007/b98964. ISBN   978-0-387-95345-8.
  104. Aitsahlia, Farid; Chung, Kai Lai (2003). Elementary Probability Theory: With Stochastic Processes and an Introduction to Mathematical Finance (4th ed.). doi:10.1007/978-0-387-21548-8. ISBN   978-0-387-95578-0.
  105. Erdős, Paul; Suranyi, Janos (2003). Topics in the Theory of Numbers. doi:10.1007/978-1-4613-0015-1. ISBN   978-0-387-95320-5.
  106. Lovász, L.; Pelikán, J.; Vesztergombi, K. (2003). Discrete Mathematics: Elementary and Beyond. doi:10.1007/b97469. ISBN   978-0-387-95584-1.
  107. Stillwell, John (2003). Elements of Number Theory. doi:10.1007/978-0-387-21735-2. ISBN   978-0-387-95587-2.
  108. Buchmann, Johannes (2004). Introduction to Cryptography (2nd ed.). doi:10.1007/978-1-4419-9003-7. ISBN   978-0-387-21156-5.
  109. Irving, Ronald S. (2004). Integers, Polynomials, and Rings: A Course in Algebra. doi:10.1007/b97633. ISBN   978-0-387-40397-7.
  110. Ross, Clay C. (2004). Differential Equations: An Introduction with Mathematica (2nd ed.). doi:10.1007/978-1-4757-3949-7. ISBN   978-0-387-21284-5.
  111. Cull, Paul; Flahive, Mary; Robson, Robby (2005). Difference Equations: From Rabbits to Chaos. doi:10.1007/0-387-27645-9. ISBN   978-0-387-23233-1.
  112. Chambert-Loir, Antoine (2005). A Field Guide to Algebra. doi:10.1007/b138364. ISBN   978-0-387-21428-3.
  113. Elaydi, Saber (2005). An Introduction to Difference Equations (3rd ed.). doi:10.1007/0-387-27602-5. ISBN   978-0-387-23059-7.
  114. Lang, Serge (2005). Undergraduate Algebra (3rd ed.). doi:10.1007/0-387-27475-8. ISBN   978-0-387-22025-3.
  115. Singer, Stephanie Frank (2005). Linearity, Symmetry, and Prediction in the Hydrogen Atom. doi:10.1007/b136359. ISBN   978-0-387-24637-6.
  116. Stillwell, John (2005). The Four Pillars of Geometry . doi:10.1007/0-387-29052-4. ISBN   978-0-387-25530-9.
  117. Bix, Robert (2006). Conics and Cubics: A Concrete Introduction to Algebraic Curves (2nd ed.). doi:10.1007/0-387-39273-4. ISBN   978-0-387-31802-8.
  118. Moschovakis, Yiannis (2006). Notes on Set Theory (2nd ed.). doi:10.1007/0-387-31609-4. ISBN   978-0387287225.
  119. Knoebel, Art; Laubenbacher, Reinhard; Lodder, Jerry; Pengelley, David (2007). Mathematical Masterpieces: Further Chronicles by the Explorers. doi:10.1007/978-0-387-33062-4. ISBN   978-0-387-33060-0.
  120. Harris, John M.; Hirst, Jeffry L.; Mossinghoff, Michael (2008). Combinatorics and Graph Theory (2nd ed.). doi:10.1007/978-0-387-79711-3. ISBN   978-0-387-79710-6.
  121. Stillwell, John (2008). Naive Lie Theory. doi:10.1007/978-0-387-78214-0. ISBN   978-0-387-78214-0.
  122. Hairer, Ernst; Wanner, Gerhard (2008) [1996]. Analysis by Its History . doi:10.1007/978-0-387-77036-9. ISBN   978-0-387-94551-4.
  123. Edgar, Gerald (2008). Edgar, Gerald (ed.). Measure, Topology, and Fractal Geometry (2nd ed.). doi:10.1007/978-0-387-74749-1. ISBN   978-0-387-74748-4.
  124. Herod, James; Shonkwiler, Ronald W. (2009). Mathematical Biology: An Introduction with Maple and Matlab (2nd ed.). doi:10.1007/978-0-387-70984-0. ISBN   978-0-387-70983-3.
  125. Mendivil, Frank; Shonkwiler, Ronald W. (2009). Explorations in Monte Carlo Methods. doi:10.1007/978-0-387-87837-9. ISBN   978-0-387-87836-2.
  126. Stein, William (2009). Elementary Number Theory: Primes, Congruences, and Secrets: A Computational Approach. doi:10.1007/b13279. ISBN   978-0-387-85524-0.
  127. Childs, Lindsay N. (2009). Childs, Lindsay N (ed.). A Concrete Introduction to Higher Algebra (3rd ed.). doi:10.1007/978-0-387-74725-5. ISBN   978-0-387-74527-5.
  128. Halmos, Paul R.; Givant, Steven (2009). Introduction to Boolean Algebras. doi:10.1007/978-0-387-68436-9. ISBN   978-0-387-40293-2.
  129. Bak, Joseph; Newman, Donald J. (2010). Complex Analysis (3rd ed.). doi:10.1007/978-1-4419-7288-0. ISBN   978-1-4419-7287-3.
  130. Beck, Matthias; Geoghegan, Ross (2010). The Art of Proof: Basic Training for Deeper Mathematics. doi:10.1007/978-1-4419-7023-7. ISBN   978-1-4419-7022-0.
  131. Callahan, James J. (2010). Advanced Calculus: A Geometric View. ISBN   978-1-4419-7331-3.
  132. Hurlbert, Glenn (2010). Linear Optimization: The Simplex Workbook. ISBN   978-0-387-79147-0.
  133. Stillwell, John (2010). Mathematics and Its History (3rd ed.). doi:10.1007/978-1-4419-6053-5. ISBN   978-1-441-96052-8.
  134. Ghorpade, Sudhir R.; Limaye, Balmohan V. (2010). A Course in Multivariable Calculus and Analysis. doi:10.1007/978-1-4419-1621-1. ISBN   978-1-4419-1620-4.
  135. Davidson, Kenneth R.; Donsig, Allan P. (2010). Real Analysis and Applications: Theory in Practice. doi:10.1007/978-0-387-98098-0. ISBN   978-0-387-98097-3.
  136. Daepp, Ulrich; Gorkin, Pamela (2011). Reading, Writing, and Proving: A Closer Look at Mathematics (2nd ed.). doi:10.1007/978-1-4419-9479-0. ISBN   978-1-4419-9478-3.
  137. Bloch, Ethan D. (2011). Proofs and Fundamentals: A First Course in Abstract Mathematics (2nd ed.). doi:10.1007/978-1-4419-7127-2. ISBN   978-1-4419-7126-5.
  138. Adkins, William A.; Davidson, Mark G. (2012). Ordinary Differential Equations. ISBN   978-1-461-43617-1.
  139. Ostermann, Alexander; Wanner, Gerhard (2012). Geometry by Its History. ISBN   978-3-642-29163-0.
  140. Petersen, Peter (2012). Linear Algebra. ISBN   978-1-4614-3612-6.
  141. Roman, Steven (2012). Introduction to the Mathematics of Finance: Arbitrage and Option Pricing. ISBN   978-1-4614-3582-2.
  142. Gerstein, Larry J. (2012). Introduction to Mathematical Structures and Proofs (2nd ed.). doi:10.1007/978-1-4614-4265-3. ISBN   978-1-4614-4264-6.
  143. Vanderbei, Robert J.; Çinlar, Erhan (2013). Real and Convex Analysis. ISBN   978-1-4614-5256-0.
  144. McInerney, Andrew (2013). First Steps in Differential Geometry. ISBN   978-1-4614-7731-0.
  145. Ross, Kenneth A. (2013). Elementary Analysis: The Theory of Calculus (2nd ed.). ISBN   978-1-4614-6270-5.
  146. Stillwell, John (2013). The Real Numbers: An Introduction to Set Theory and Analysis. doi:10.1007/978-3-319-01577-4. ISBN   978-3-319-01576-7.
  147. Conway, John B. (2014). A Course in Point Set Topology. ISBN   978-3-319-02367-0.
  148. Olver, Peter J. (2014). Introduction to Partial Differential Equations. ISBN   978-3-319-02098-3.
  149. Mercer, Peter R. (2014). More Calculus of a Single Variable. doi:10.1007/978-1-4939-1926-0. ISBN   978-1-4939-1925-3.
  150. Hoffstein, Jeffrey; Pipher, Jill; Silverman, Joseph H. (2014). An Introduction to Mathematical Cryptography (2nd ed.). doi:10.1007/978-1-4939-1711-2. ISBN   978-1-4939-1710-5.
  151. Terrell, Maria Shea; Lax, Peter D. (2014). Calculus with Applications (2nd ed.). doi:10.1007/978-1-4614-7946-8. ISBN   978-1-4614-7945-1.
  152. Beck, Matthias; Robins, Sinai (2015). Computing the Continuous Discretely: Integer-point Enumeration in Polyhedra (2nd ed.). doi:10.1007/978-1-4939-2969-6. ISBN   978-1-4939-2968-9.
  153. Laczkovich, Miklós; Sós, Vera T. (2015). Real Analysis: Foundations and Functions of One Variable. doi:10.1007/978-1-4939-2766-1. ISBN   978-1-4939-2765-4.
  154. Pugh, Charles C. (2015). Real Mathematical Analysis (2nd ed.). doi:10.1007/978-3-319-17771-7. ISBN   978-3-319-17770-0.
  155. Logan, David J. (2015). A First Course in Differential Equations (3rd ed.). doi:10.1007/978-3-319-17852-3. ISBN   978-3-319-17851-6.
  156. Silverman, Joseph H.; Tate, John (2015). Rational Points on Elliptic Curves (2nd ed.). doi:10.1007/978-3-319-18588-0. ISBN   978-3-319-18587-3.
  157. Little, Charles; Kee, Teo; van Brunt, Bruce (2015). Real Analysis via Sequences and Series. doi:10.1007/978-1-4939-2651-0. ISBN   978-1-4939-2650-3. Zbl   1325.26002.
  158. Abbott, Stephen (2015). Understanding Analysis (2nd ed.). doi:10.1007/978-1-4939-2712-8. ISBN   978-1-4939-2711-1.
  159. Cox, David; Little, John; O'Shea, Danal (2015). Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra (4th ed.). doi:10.1007/978-3-319-16721-3. ISBN   978-3-319-16720-6.
  160. Logan, David J. (2015). Applied Partial Differential Equations (3rd ed.). doi:10.1007/978-3-319-12493-3. ISBN   978-3-319-12492-6.
  161. Tapp, Kristopher (2016). Differential Geometry of Curves and Surfaces. doi:10.1007/978-3-319-39799-3. ISBN   978-3-319-39798-6.
  162. Hijab, Omar (2016). Introduction to Calculus and Classical Analysis (4th ed.). doi:10.1007/978-3-319-28400-2. ISBN   978-3-319-28399-9.
  163. Shurman, Jerry (2016). Calculus and Analysis in Euclidean Space. doi:10.1007/978-3-319-49314-5. ISBN   978-3-319-49312-1.
  164. Laczkovich, Miklós; Sós, Vera T. (2017). Real Analysis: Series, Functions of Several Variables, and Applications. doi:10.1007/978-1-4939-7369-9. ISBN   978-1-4939-7367-5.
  165. Lax, Peter D.; Terrell, Maria Shea (2017). Multivariable Calculus with Applications. doi:10.1007/978-3-319-74073-7. ISBN   978-3-319-74072-0.
  166. Shores, Thomas S. (2018). Applied Linear Algebra and Matrix Analysis (2nd ed.). doi:10.1007/978-3-319-74748-4. ISBN   978-3-319-74747-7.
  167. Olver, Peter J.; Shakiban, Chehrzad (2018). Applied Linear Algebra (2nd ed.). doi:10.1007/978-3-319-91041-3. ISBN   978-3-319-91040-6.
  168. Stanley, Richard P. (2018). Algebraic Combinatorics: Walks, Trees, Tableaux, and More (2nd ed.). doi:10.1007/978-3-319-77173-1. ISBN   978-3-319-77172-4.
  169. Ghorpade, Sudhir R.; Limaye, Balmohan V. (2018). A Course in Calculus and Real Analysis (2nd ed.). doi:10.1007/978-3-030-01400-1. ISBN   978-3-030-01399-8.
  170. Asmar, Nakhle H.; Grafakos, Loukas (2018). Complex Analysis with Applications. doi:10.1007/978-3-319-94063-2. ISBN   978-3-319-94062-5.
  171. Rosenthal, Daniel; Rosenthal, David; Rosenthal, Peter (2018). A Readable Introduction to Real Mathematics (2nd ed.). doi:10.1007/978-3-030-00632-7. ISBN   978-3-030-00631-0.
  172. Takloo-Bighash, Ramin (2018). A Pythagorean Introduction to Number Theory. doi:10.1007/978-3-030-02604-2. ISBN   978-3-030-02603-5.
  173. Petersen, T. Kyle (2019). Inquiry-Based Enumerative Combinatorics: One, Two, Skip a Few... Ninety-Nine, One Hundred. doi:10.1007/978-3-030-18308-0. ISBN   978-3-030-18307-3. S2CID   198449235.
  174. Saari, Donald G. (2019). Mathematics of Finance: An Intuitive Introduction. doi:10.1007/978-3-030-25443-8. ISBN   978-3-030-25442-1. S2CID   203236074.
  175. Jongsma, Calvin (2019). Introduction to Discrete Mathematics via Logic and Proof. doi:10.1007/978-3-030-25358-5. ISBN   978-3-030-25357-8. S2CID   209065336.
  176. Lee, Nam-Hoon (2020). Geometry: from Isometries to Special Relativity. doi:10.1007/978-3-030-42101-4. ISBN   978-3-030-42100-7. S2CID   219025032.
  177. Bajnok, Béla (2020). An Invitation to Abstract Mathematics (2nd ed.). doi:10.1007/978-3-030-56174-1. ISBN   978-3-030-56173-4.
  178. Stillwell, John (2020). Mathematics and Its History: A Concise Edition. doi:10.1007/978-3-030-55193-3. ISBN   978-3-030-55192-6.
  179. Toth, Gabor (2021). Elements of Mathematics: A Problem-Centered Approach to History and Foundations. doi:10.1007/978-3-030-75051-0. ISBN   978-3-030-75050-3.
  180. Morris, Sidney A.; Jones, Arthur; Pearson, Kenneth R. (2022). Abstract Algebra and Famous Impossibilities: Squaring the Circle, Doubling the Cube, Trisecting an Angle, and Solving Quintic Equations. doi:10.1007/978-3-031-05698-7. ISBN   978-3-031-05697-0.
  181. McLeman, Cam; McNicholas, Erin; Starr, Colin (2022). Explorations in Number Theory: Commuting through the Numberverse. doi:10.1007/978-3-030-98931-6. ISBN   978-3-030-98930-9.
  182. Ireland, Kenneth; Cuoco, Al (2023). Excursions in Number Theory, Algebra, and Analysis. doi:10.1007/978-3-031-13017-5. ISBN   978-3-031-13016-8.
  183. Sheydvasser, Arseniy (2023). Linear Fractional Transformations: An Illustrated Introduction. doi:10.1007/978-3-031-25002-6. ISBN   978-3-031-25001-9.
  184. Gouvêa, Fernando Q. (2023). A Short Book on Long Sums: Infinite Series for Calculus Students. doi:10.1007/978-3-031-37557-6. ISBN   978-3-031-37556-9.
  185. Axler, Sheldon (2023). Linear Algebra Done Right (4th ed.). doi:10.1007/978-3-031-41026-0. ISBN   978-3-031-41025-3.

See also