Jonathan Micah Rosenberg (born December 30, 1951, in Chicago, Illinois) [1] is an American mathematician, working in algebraic topology, operator algebras, K-theory and representation theory, with applications to string theory (especially dualities) in physics.
Rosenberg received his Ph.D. in 1976, under the supervision of Marc Rieffel, from the University of California, Berkeley (Group C*-algebras and square integrable representations). [2] From 1977 to 1981 he was an assistant professor at the University of Pennsylvania. Since 1981, he has been at the University of Maryland at College Park where he is the Ruth M. Davis Professor of Mathematics. He is also a fellow of the American Mathematical Society (AMS). [3]
He studies operator algebras and their relations with topology, geometry, with the unitary representation theory of Lie groups, K-theory and index theory. Along with H. Blaine Lawson and Mikhail Leonidovich Gromov, he is known for the Gromov–Lawson–Rosenberg conjecture.
Since 2015 he has been a managing editor of the Annals of K-Theory. During 2007-2015 he was an editor of the Journal of K-Theory. Before that, he was an associate editor of the Journal of the AMS (2000-2003), and of the Proceedings of the AMS (1988-1992). He was a Sloan Fellow from 1981 to 1984.
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric. This gives, in particular, local notions of angle, length of curves, surface area and volume. From those, some other global quantities can be derived by integrating local contributions.
In the mathematical field of Riemannian geometry, the scalar curvature is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry of the metric near that point. It is defined by a complicated explicit formula in terms of partial derivatives of the metric components, although it is also characterized by the volume of infinitesimally small geodesic balls. In the context of the differential geometry of surfaces, the scalar curvature is twice the Gaussian curvature, and completely characterizes the curvature of a surface. In higher dimensions, however, the scalar curvature only represents one particular part of the Riemann curvature tensor.
Noncommutative geometry (NCG) is a branch of mathematics concerned with a geometric approach to noncommutative algebras, and with the construction of spaces that are locally presented by noncommutative algebras of functions, possibly in some generalized sense. A noncommutative algebra is an associative algebra in which the multiplication is not commutative, that is, for which does not always equal ; or more generally an algebraic structure in which one of the principal binary operations is not commutative; one also allows additional structures, e.g. topology or norm, to be possibly carried by the noncommutative algebra of functions.
Shing-Tung Yau is a Chinese-American mathematician. He is the director of the Yau Mathematical Sciences Center at Tsinghua University and Professor Emeritus at Harvard University. Until 2022, Yau was the William Caspar Graustein Professor of Mathematics at Harvard, at which point he moved to Tsinghua.
Sergei Petrovich Novikov was a Soviet and Russian mathematician, noted for work in both algebraic topology and soliton theory. He became the first Soviet mathematician to receive the Fields Medal in 1970.
Richard Streit Hamilton was an American mathematician who served as the Davies Professor of Mathematics at Columbia University. He is known for contributions to geometric analysis and partial differential equations. Hamilton is best known for foundational contributions to the theory of the Ricci flow and the development of a corresponding program of techniques and ideas for resolving the Poincaré conjecture and geometrization conjecture in the field of geometric topology.
Mikhael Leonidovich Gromov is a Russian-French mathematician known for his work in geometry, analysis and group theory. He is a permanent member of Institut des Hautes Études Scientifiques in France and a professor of mathematics at New York University.
Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups can act non-trivially.
Sir Simon Kirwan Donaldson is an English mathematician known for his work on the topology of smooth (differentiable) four-dimensional manifolds, Donaldson–Thomas theory, and his contributions to Kähler geometry. He is currently a permanent member of the Simons Center for Geometry and Physics at Stony Brook University in New York, and a Professor in Pure Mathematics at Imperial College London.
Richard Melvin Schoen is an American mathematician known for his work in differential geometry and geometric analysis. He is best known for the resolution of the Yamabe problem in 1984.
Tian Gang is a Chinese mathematician. He is a professor of mathematics at Peking University and Higgins Professor Emeritus at Princeton University. He is known for contributions to the mathematical fields of Kähler geometry, Gromov-Witten theory, and geometric analysis.
Clifford Henry Taubes is the William Petschek Professor of Mathematics at Harvard University and works in gauge field theory, differential geometry, and low-dimensional topology. His brother is the journalist Gary Taubes.
The Oswald Veblen Prize in Geometry is an award granted by the American Mathematical Society for notable research in geometry or topology. It was funded in 1961 in memory of Oswald Veblen and first issued in 1964. The Veblen Prize is now worth US$5000, and is awarded every three years.
In mathematics, specifically geometric topology, the Borel conjecture asserts that an aspherical closed manifold is determined by its fundamental group, up to homeomorphism. It is a rigidity conjecture, asserting that a weak, algebraic notion of equivalence should imply a stronger, topological notion.
The Geometry Festival is an annual mathematics conference held in the United States.
Herbert Blaine Lawson, Jr. is a mathematician best known for his work in minimal surfaces, calibrated geometry, and algebraic cycles. He is currently a Distinguished Professor of Mathematics at Stony Brook University. He received his PhD from Stanford University in 1969 for work carried out under the supervision of Robert Osserman.
Guoliang Yu is a Chinese American mathematician. After receiving his Ph.D from SUNY at Stony Brook in 1991 under the direction of Ronald G. Douglas, Yu spent time at the Mathematical Sciences Research Institute (1991–1992), the University of Colorado at Boulder (1992–2000), Vanderbilt University (2000–2012), and a variety of visiting positions. He currently holds the Powell Chair in Mathematics and was appointed University Distinguished Professor in 2018 at Texas A&M University. He is a fellow of the American Mathematical Society.
Andrew Alexander Ranicki was a British mathematician who worked on algebraic topology. He was a professor of mathematics at the University of Edinburgh.
Thomas Schick is a German mathematician, specializing in algebraic topology and differential geometry.