Twisted K-theory

Last updated

In mathematics, twisted K-theory (also called K-theory with local coefficients [1] ) is a variation on K-theory, a mathematical theory from the 1950s that spans algebraic topology, abstract algebra and operator theory.

Contents

More specifically, twisted K-theory with twist H is a particular variant of K-theory, in which the twist is given by an integral 3-dimensional cohomology class. It is special among the various twists that K-theory admits for two reasons. First, it admits a geometric formulation. This was provided in two steps; the first one was done in 1970 (Publ. Math. de l'IHÉS) by Peter Donovan and Max Karoubi; the second one in 1988 by Jonathan Rosenberg in Continuous-Trace Algebras from the Bundle Theoretic Point of View.

In physics, it has been conjectured to classify D-branes, Ramond-Ramond field strengths and in some cases even spinors in type II string theory. For more information on twisted K-theory in string theory, see K-theory (physics).

In the broader context of K-theory, in each subject it has numerous isomorphic formulations and, in many cases, isomorphisms relating definitions in various subjects have been proven. It also has numerous deformations, for example, in abstract algebra K-theory may be twisted by any integral cohomology class.

The definition

To motivate Rosenberg's geometric formulation of twisted K-theory, start from the Atiyah–Jänich theorem, stating that

the Fredholm operators on Hilbert space , is a classifying space for ordinary, untwisted K-theory. This means that the K-theory of the space consists of the homotopy classes of maps

from to

A slightly more complicated way of saying the same thing is as follows. Consider the trivial bundle of over , that is, the Cartesian product of and . Then the K-theory of consists of the homotopy classes of sections of this bundle.

We can make this yet more complicated by introducing a trivial

bundle over , where is the group of projective unitary operators on the Hilbert space . Then the group of maps

from to which are equivariant under an action of is equivalent to the original groups of maps

This more complicated construction of ordinary K-theory is naturally generalized to the twisted case. To see this, note that bundles on are classified by elements of the third integral cohomology group of . This is a consequence of the fact that topologically is a representative Eilenberg–MacLane space

.

The generalization is then straightforward. Rosenberg has defined

,

the twisted K-theory of with twist given by the 3-class , to be the space of homotopy classes of sections of the trivial bundle over that are covariant with respect to a bundle fibered over with 3-class , that is

Equivalently, it is the space of homotopy classes of sections of the bundles associated to a bundle with class .

What is it?

When is the trivial class, twisted K-theory is just untwisted K-theory, which is a ring. However, when is nontrivial this theory is no longer a ring. It has an addition, but it is no longer closed under multiplication.

However, the direct sum of the twisted K-theories of with all possible twists is a ring. In particular, the product of an element of K-theory with twist with an element of K-theory with twist is an element of K-theory twisted by . This element can be constructed directly from the above definition by using adjoints of Fredholm operators and construct a specific 2 x 2 matrix out of them (see the reference 1, where a more natural and general Z/2-graded version is also presented). In particular twisted K-theory is a module over classical K-theory.

How to calculate it

Physicist typically want to calculate twisted K-theory using the Atiyah–Hirzebruch spectral sequence. [2] The idea is that one begins with all of the even or all of the odd integral cohomology, depending on whether one wishes to calculate the twisted or the twisted , and then one takes the cohomology with respect to a series of differential operators. The first operator, , for example, is the sum of the three-class , which in string theory corresponds to the Neveu-Schwarz 3-form, and the third Steenrod square, [3] so

No elementary form for the next operator, , has been found, although several conjectured forms exist. Higher operators do not contribute to the -theory of a 10-manifold, which is the dimension of interest in critical superstring theory. Over the rationals Michael Atiyah and Graeme Segal have shown that all of the differentials reduce to Massey products of . [4]

After taking the cohomology with respect to the full series of differentials one obtains twisted -theory as a set, but to obtain the full group structure one in general needs to solve an extension problem.

Example: the three-sphere

The three-sphere, , has trivial cohomology except for and which are both isomorphic to the integers. Thus the even and odd cohomologies are both isomorphic to the integers. Because the three-sphere is of dimension three, which is less than five, the third Steenrod square is trivial on its cohomology and so the first nontrivial differential is just . The later differentials increase the degree of a cohomology class by more than three and so are again trivial; thus the twisted -theory is just the cohomology of the operator which acts on a class by cupping it with the 3-class .

Imagine that is the trivial class, zero. Then is also trivial. Thus its entire domain is its kernel, and nothing is in its image. Thus is the kernel of in the even cohomology, which is the full even cohomology, which consists of the integers. Similarly consists of the odd cohomology quotiented by the image of , in other words quotiented by the trivial group. This leaves the original odd cohomology, which is again the integers. In conclusion, and of the three-sphere with trivial twist are both isomorphic to the integers. As expected, this agrees with the untwisted -theory.

Now consider the case in which is nontrivial. is defined to be an element of the third integral cohomology, which is isomorphic to the integers. Thus corresponds to a number, which we will call . now takes an element of and yields the element of . As is not equal to zero by assumption, the only element of the kernel of is the zero element, and so . The image of consists of all elements of the integers that are multiples of . Therefore, the odd cohomology, , quotiented by the image of , , is the cyclic group of order , . In conclusion

In string theory this result reproduces the classification of D-branes on the 3-sphere with units of -flux, which corresponds to the set of symmetric boundary conditions in the supersymmetric WZW model at level .

There is an extension of this calculation to the group manifold of SU(3). [5] In this case the Steenrod square term in , the operator , and the extension problem are nontrivial.

See also

Notes

  1. Donavan, Peter; Karoubi, Max (1970). "Graded Brauer groups and $K$-theory with local coefficients". Publications Mathématiques de l'IHÉS. 38: 5–25.
  2. A guide to such calculations in the case of twisted K-theory can be found in E8 Gauge Theory, and a Derivation of K-Theory from M-Theory by Emanuel Diaconescu, Gregory Moore and Edward Witten (DMW).
  3. (DMW) also provide a crash course in Steenrod squares for physicists.
  4. In Twisted K-theory and cohomology.
  5. In D-Brane Instantons and K-Theory Charges by Juan Maldacena, Gregory Moore and Nathan Seiberg.

Related Research Articles

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.

In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi–Yau manifolds, string theory, Chern–Simons theory, knot theory, Gromov–Witten invariants, topological quantum field theory, the Chern theorem etc.

In differential geometry, the Atiyah–Singer index theorem, proved by Michael Atiyah and Isadore Singer (1963), states that for an elliptic differential operator on a compact manifold, the analytical index is equal to the topological index. It includes many other theorems, such as the Chern–Gauss–Bonnet theorem and Riemann–Roch theorem, as special cases, and has applications to theoretical physics.

In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic.

Algebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called K-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the K-groups of the integers.

In mathematics, a gerbe is a construct in homological algebra and topology. Gerbes were introduced by Jean Giraud following ideas of Alexandre Grothendieck as a tool for non-commutative cohomology in degree 2. They can be seen as an analogue of fibre bundles where the fibre is the classifying stack of a group. Gerbes provide a convenient, if highly abstract, language for dealing with many types of deformation questions especially in modern algebraic geometry. In addition, special cases of gerbes have been used more recently in differential topology and differential geometry to give alternative descriptions to certain cohomology classes and additional structures attached to them.

In mathematics, in particular in algebraic topology and differential geometry, the Stiefel–Whitney classes are a set of topological invariants of a real vector bundle that describe the obstructions to constructing everywhere independent sets of sections of the vector bundle. Stiefel–Whitney classes are indexed from 0 to n, where n is the rank of the vector bundle. If the Stiefel–Whitney class of index i is nonzero, then there cannot exist (ni+1) everywhere linearly independent sections of the vector bundle. A nonzero nth Stiefel–Whitney class indicates that every section of the bundle must vanish at some point. A nonzero first Stiefel–Whitney class indicates that the vector bundle is not orientable. For example, the first Stiefel–Whitney class of the Möbius strip, as a line bundle over the circle, is not zero, whereas the first Stiefel–Whitney class of the trivial line bundle over the circle, S1×R, is zero.

In mathematics, the Thom space,Thom complex, or Pontryagin–Thom construction of algebraic topology and differential topology is a topological space associated to a vector bundle, over any paracompact space.

In mathematics, a bundle gerbe is a geometrical model of certain 1-gerbes with connection, or equivalently of a 2-class in Deligne cohomology.

In algebraic topology, a Steenrod algebra was defined by Henri Cartan (1955) to be the algebra of stable cohomology operations for mod cohomology.

In mathematics, specifically in symplectic topology and algebraic geometry, Gromov–Witten (GW) invariants are rational numbers that, in certain situations, count pseudoholomorphic curves meeting prescribed conditions in a given symplectic manifold. The GW invariants may be packaged as a homology or cohomology class in an appropriate space, or as the deformed cup product of quantum cohomology. These invariants have been used to distinguish symplectic manifolds that were previously indistinguishable. They also play a crucial role in closed type IIA string theory. They are named after Mikhail Gromov and Edward Witten.

In mathematics, a circle bundle is a fiber bundle where the fiber is the circle .

In mathematics, topological K-theory is a branch of algebraic topology. It was founded to study vector bundles on topological spaces, by means of ideas now recognised as (general) K-theory that were introduced by Alexander Grothendieck. The early work on topological K-theory is due to Michael Atiyah and Friedrich Hirzebruch.

In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle of a smooth manifold, it generalizes the classical notion of Euler characteristic. It is named after Leonhard Euler because of this.

In mathematics, equivariant cohomology is a cohomology theory from algebraic topology which applies to topological spaces with a group action. It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory. Specifically, the equivariant cohomology ring of a space with action of a topological group is defined as the ordinary cohomology ring with coefficient ring of the homotopy quotient :

In mathematics, the projective unitary groupPU(n) is the quotient of the unitary group U(n) by the right multiplication of its center, U(1), embedded as scalars. Abstractly, it is the holomorphic isometry group of complex projective space, just as the projective orthogonal group is the isometry group of real projective space.

In mathematics, the Atiyah–Hirzebruch spectral sequence is a spectral sequence for calculating generalized cohomology, introduced by Michael Atiyah and Friedrich Hirzebruch (1961) in the special case of topological K-theory. For a CW complex and a generalized cohomology theory , it relates the generalized cohomology groups

In mathematics, elliptic cohomology is a cohomology theory in the sense of algebraic topology. It is related to elliptic curves and modular forms.

References