Polyakov action Last updated May 26, 2025  2D conformal field theory used in string theory
In physics , the Polyakov action  is an action  of the two-dimensional conformal field theory  describing the worldsheet  of a string in string theory . It was introduced by Stanley Deser  and Bruno Zumino  and independently by L. Brink , P. Di Vecchia  and P. S. Howe in 1976, [ 1]     [ 2]     and has become associated with Alexander Polyakov  after he made use of it in quantizing the string in 1981. [ 3]     The action reads:
S = T 2 ∫ d 2 σ − h h a b g μ ν ( X ) ∂ a X μ ( σ ) ∂ b X ν ( σ ) , {\displaystyle {\mathcal {S}}={\frac {T}{2}}\int \mathrm {d} ^{2}\sigma \,{\sqrt {-h}}\,h^{ab}g_{\mu \nu }(X)\partial _{a}X^{\mu }(\sigma )\partial _{b}X^{\nu }(\sigma ),} where T {\displaystyle T}   is the string tension , g μ ν {\displaystyle g_{\mu \nu }}   is the metric of the target manifold , h a b {\displaystyle h_{ab}}   is the worldsheet metric, h a b {\displaystyle h^{ab}}   its inverse, and h {\displaystyle h}   is the determinant of h a b {\displaystyle h_{ab}}  . The metric signature  is chosen such that timelike directions are + and the spacelike directions are −. The spacelike worldsheet coordinate is called σ {\displaystyle \sigma }  , whereas the timelike worldsheet coordinate is called τ {\displaystyle \tau }  . This is also known as the nonlinear sigma model . [ 4]    
The Polyakov action must be supplemented by the Liouville action  to describe string fluctuations.
Global symmetries N.B.: Here, a symmetry is said to be local or global from the two dimensional theory (on the worldsheet) point of view. For example, Lorentz transformations, that are local symmetries of the space-time, are global symmetries of the theory on the worldsheet.
  The action is invariant  under spacetime translations  and infinitesimal  Lorentz transformations  
X α → X α + b α , {\displaystyle X^{\alpha }\to X^{\alpha }+b^{\alpha },} X α → X α + ω   β α X β , {\displaystyle X^{\alpha }\to X^{\alpha }+\omega _{\ \beta }^{\alpha }X^{\beta },} where ω μ ν = − ω ν μ {\displaystyle \omega _{\mu \nu }=-\omega _{\nu \mu }}  , and b α {\displaystyle b^{\alpha }}   is a constant. This forms the Poincaré symmetry  of the target manifold.
The invariance under (i) follows since the action S {\displaystyle {\mathcal {S}}}   depends only on the first derivative of X α {\displaystyle X^{\alpha }}  . The proof of the invariance under (ii) is as follows:
S ′ = T 2 ∫ d 2 σ − h h a b g μ ν ∂ a ( X μ + ω   δ μ X δ ) ∂ b ( X ν + ω   δ ν X δ ) = S + T 2 ∫ d 2 σ − h h a b ( ω μ δ ∂ a X μ ∂ b X δ + ω ν δ ∂ a X δ ∂ b X ν ) + O  ( ω 2 ) = S + T 2 ∫ d 2 σ − h h a b ( ω μ δ + ω δ μ ) ∂ a X μ ∂ b X δ + O  ( ω 2 ) = S + O  ( ω 2 ) . {\displaystyle {\begin{aligned}{\mathcal {S}}'&={T \over 2}\int \mathrm {d} ^{2}\sigma \,{\sqrt {-h}}\,h^{ab}g_{\mu \nu }\partial _{a}\left(X^{\mu }+\omega _{\ \delta }^{\mu }X^{\delta }\right)\partial _{b}\left(X^{\nu }+\omega _{\ \delta }^{\nu }X^{\delta }\right)\\&={\mathcal {S}}+{T \over 2}\int \mathrm {d} ^{2}\sigma \,{\sqrt {-h}}\,h^{ab}\left(\omega _{\mu \delta }\partial _{a}X^{\mu }\partial _{b}X^{\delta }+\omega _{\nu \delta }\partial _{a}X^{\delta }\partial _{b}X^{\nu }\right)+\operatorname {O} \left(\omega ^{2}\right)\\&={\mathcal {S}}+{T \over 2}\int \mathrm {d} ^{2}\sigma \,{\sqrt {-h}}\,h^{ab}\left(\omega _{\mu \delta }+\omega _{\delta \mu }\right)\partial _{a}X^{\mu }\partial _{b}X^{\delta }+\operatorname {O} \left(\omega ^{2}\right)\\&={\mathcal {S}}+\operatorname {O} \left(\omega ^{2}\right).\end{aligned}}} Local symmetries The action is invariant  under worldsheet diffeomorphisms  (or coordinates transformations) and Weyl transformations .
Diffeomorphisms Assume the following transformation:
σ α → σ ~ α ( σ , τ ) . {\displaystyle \sigma ^{\alpha }\rightarrow {\tilde {\sigma }}^{\alpha }\left(\sigma ,\tau \right).} It transforms the metric tensor  in the following way:
h a b ( σ ) → h ~ a b = h c d ( σ ~ ) ∂ σ a ∂ σ ~ c ∂ σ b ∂ σ ~ d . {\displaystyle h^{ab}(\sigma )\rightarrow {\tilde {h}}^{ab}=h^{cd}({\tilde {\sigma }}){\frac {\partial {\sigma }^{a}}{\partial {\tilde {\sigma }}^{c}}}{\frac {\partial {\sigma }^{b}}{\partial {\tilde {\sigma }}^{d}}}.} One can see that:
h ~ a b ∂ ∂ σ a X μ ( σ ~ ) ∂ ∂ σ b X ν ( σ ~ ) = h c d ( σ ~ ) ∂ σ a ∂ σ ~ c ∂ σ b ∂ σ ~ d ∂ ∂ σ a X μ ( σ ~ ) ∂ ∂ σ b X ν ( σ ~ ) = h a b ( σ ~ ) ∂ ∂ σ ~ a X μ ( σ ~ ) ∂ ∂ σ ~ b X ν ( σ ~ ) . {\displaystyle {\tilde {h}}^{ab}{\frac {\partial }{\partial {\sigma }^{a}}}X^{\mu }({\tilde {\sigma }}){\frac {\partial }{\partial \sigma ^{b}}}X^{\nu }({\tilde {\sigma }})=h^{cd}\left({\tilde {\sigma }}\right){\frac {\partial \sigma ^{a}}{\partial {\tilde {\sigma }}^{c}}}{\frac {\partial \sigma ^{b}}{\partial {\tilde {\sigma }}^{d}}}{\frac {\partial }{\partial \sigma ^{a}}}X^{\mu }({\tilde {\sigma }}){\frac {\partial }{\partial {\sigma }^{b}}}X^{\nu }({\tilde {\sigma }})=h^{ab}\left({\tilde {\sigma }}\right){\frac {\partial }{\partial {\tilde {\sigma }}^{a}}}X^{\mu }({\tilde {\sigma }}){\frac {\partial }{\partial {\tilde {\sigma }}^{b}}}X^{\nu }({\tilde {\sigma }}).} One knows that the Jacobian  of this transformation is given by
J = det  ( ∂ σ ~ α ∂ σ β ) , {\displaystyle \mathrm {J} =\operatorname {det} \left({\frac {\partial {\tilde {\sigma }}^{\alpha }}{\partial \sigma ^{\beta }}}\right),} which leads to
d 2 σ ~ = J d 2 σ h = det  ( h a b ) ⇒ h ~ = J 2 h , {\displaystyle {\begin{aligned}\mathrm {d} ^{2}{\tilde {\sigma }}&=\mathrm {J} \mathrm {d} ^{2}\sigma \\h&=\operatorname {det} \left(h_{ab}\right)\\\Rightarrow {\tilde {h}}&=\mathrm {J} ^{2}h,\end{aligned}}} and one sees that
− h ~ d 2 σ = − h ( σ ~ ) d 2 σ ~ . {\displaystyle {\sqrt {-{\tilde {h}}}}\mathrm {d} ^{2}{\sigma }={\sqrt {-h\left({\tilde {\sigma }}\right)}}\mathrm {d} ^{2}{\tilde {\sigma }}.} Summing up this transformation and relabeling σ ~ = σ {\displaystyle {\tilde {\sigma }}=\sigma }  , we see that the action is invariant.
Assume the Weyl transformation :
h a b → h ~ a b = Λ ( σ ) h a b , {\displaystyle h_{ab}\to {\tilde {h}}_{ab}=\Lambda (\sigma )h_{ab},} then
h ~ a b = Λ − 1 ( σ ) h a b , det  ( h ~ a b ) = Λ 2 ( σ ) det  ( h a b ) . {\displaystyle {\begin{aligned}{\tilde {h}}^{ab}&=\Lambda ^{-1}(\sigma )h^{ab},\\\operatorname {det} \left({\tilde {h}}_{ab}\right)&=\Lambda ^{2}(\sigma )\operatorname {det} (h_{ab}).\end{aligned}}} And finally:
S ′ , {\displaystyle {\mathcal {S}}',} = T 2 ∫ d 2 σ − h ~ h ~ a b g μ ν ( X ) ∂ a X μ ( σ ) ∂ b X ν ( σ ) , {\displaystyle ={T \over 2}\int \mathrm {d} ^{2}\sigma {\sqrt {-{\tilde {h}}}}{\tilde {h}}^{ab}g_{\mu \nu }(X)\partial _{a}X^{\mu }(\sigma )\partial _{b}X^{\nu }(\sigma ),} = T 2 ∫ d 2 σ − h ( Λ Λ − 1 ) h a b g μ ν ( X ) ∂ a X μ ( σ ) ∂ b X ν ( σ ) = S . {\displaystyle ={T \over 2}\int \mathrm {d} ^{2}\sigma {\sqrt {-h}}\left(\Lambda \Lambda ^{-1}\right)h^{ab}g_{\mu \nu }(X)\partial _{a}X^{\mu }(\sigma )\partial _{b}X^{\nu }(\sigma )={\mathcal {S}}.} 
And one can see that the action is invariant under Weyl transformation . If we consider n -dimensional (spatially) extended objects whose action is proportional to their worldsheet area/hyperarea, unless n  = 1, the corresponding Polyakov action would contain another term breaking Weyl symmetry.
One can define the stress–energy tensor :
T a b = − 2 − h δ S δ h a b . {\displaystyle T^{ab}={\frac {-2}{\sqrt {-h}}}{\frac {\delta S}{\delta h_{ab}}}.} Let's define:
h ^ a b = exp  ( ϕ ( σ ) ) h a b . {\displaystyle {\hat {h}}_{ab}=\exp \left(\phi (\sigma )\right)h_{ab}.} Because of Weyl symmetry , the action does not depend on ϕ {\displaystyle \phi }  :
δ S δ ϕ = δ S δ h ^ a b δ h ^ a b δ ϕ = − 1 2 − h T a b e ϕ h a b = − 1 2 − h T   a a e ϕ = 0 ⇒ T   a a = 0 , {\displaystyle {\frac {\delta S}{\delta \phi }}={\frac {\delta S}{\delta {\hat {h}}_{ab}}}{\frac {\delta {\hat {h}}_{ab}}{\delta \phi }}=-{\frac {1}{2}}{\sqrt {-h}}\,T_{ab}\,e^{\phi }\,h^{ab}=-{\frac {1}{2}}{\sqrt {-h}}\,T_{\ a}^{a}\,e^{\phi }=0\Rightarrow T_{\ a}^{a}=0,} where we've used the functional derivative  chain rule.
 Relation with Nambu–Goto actionWriting the Euler–Lagrange equation  for the metric tensor  h a b {\displaystyle h^{ab}}   one obtains that
δ S δ h a b = T a b = 0. {\displaystyle {\frac {\delta S}{\delta h^{ab}}}=T_{ab}=0.} Knowing also that:
δ − h = − 1 2 − h h a b δ h a b . {\displaystyle \delta {\sqrt {-h}}=-{\frac {1}{2}}{\sqrt {-h}}h_{ab}\delta h^{ab}.} One can write the variational derivative of the action:
δ S δ h a b = T 2 − h ( G a b − 1 2 h a b h c d G c d ) , {\displaystyle {\frac {\delta S}{\delta h^{ab}}}={\frac {T}{2}}{\sqrt {-h}}\left(G_{ab}-{\frac {1}{2}}h_{ab}h^{cd}G_{cd}\right),} where G a b = g μ ν ∂ a X μ ∂ b X ν {\displaystyle G_{ab}=g_{\mu \nu }\partial _{a}X^{\mu }\partial _{b}X^{\nu }}  , which leads to
T a b = T ( G a b − 1 2 h a b h c d G c d ) = 0 , G a b = 1 2 h a b h c d G c d , G = det  ( G a b ) = 1 4 h ( h c d G c d ) 2 . {\displaystyle {\begin{aligned}T_{ab}&=T\left(G_{ab}-{\frac {1}{2}}h_{ab}h^{cd}G_{cd}\right)=0,\\G_{ab}&={\frac {1}{2}}h_{ab}h^{cd}G_{cd},\\G&=\operatorname {det} \left(G_{ab}\right)={\frac {1}{4}}h\left(h^{cd}G_{cd}\right)^{2}.\end{aligned}}} If the auxiliary worldsheet  metric tensor  − h {\displaystyle {\sqrt {-h}}}   is calculated from the equations of motion:
− h = 2 − G h c d G c d {\displaystyle {\sqrt {-h}}={\frac {2{\sqrt {-G}}}{h^{cd}G_{cd}}}} and substituted back to the action, it becomes the Nambu–Goto action :
S = T 2 ∫ d 2 σ − h h a b G a b = T 2 ∫ d 2 σ 2 − G h c d G c d h a b G a b = T ∫ d 2 σ − G . {\displaystyle S={T \over 2}\int \mathrm {d} ^{2}\sigma {\sqrt {-h}}h^{ab}G_{ab}={T \over 2}\int \mathrm {d} ^{2}\sigma {\frac {2{\sqrt {-G}}}{h^{cd}G_{cd}}}h^{ab}G_{ab}=T\int \mathrm {d} ^{2}\sigma {\sqrt {-G}}.} However, the Polyakov action is more easily quantized  because it is linear .
Equations of motion Using diffeomorphisms  and Weyl transformation , with a Minkowskian target space , one can make the physically insignificant transformation − h h a b → η a b {\displaystyle {\sqrt {-h}}h^{ab}\rightarrow \eta ^{ab}}  , thus writing the action in the conformal gauge :
S = T 2 ∫ d 2 σ − η η a b g μ ν ( X ) ∂ a X μ ( σ ) ∂ b X ν ( σ ) = T 2 ∫ d 2 σ ( X ˙ 2 − X ′ 2 ) , {\displaystyle {\mathcal {S}}={T \over 2}\int \mathrm {d} ^{2}\sigma {\sqrt {-\eta }}\eta ^{ab}g_{\mu \nu }(X)\partial _{a}X^{\mu }(\sigma )\partial _{b}X^{\nu }(\sigma )={T \over 2}\int \mathrm {d} ^{2}\sigma \left({\dot {X}}^{2}-X'^{2}\right),} where η a b = ( 1 0 0 − 1 ) {\displaystyle \eta _{ab}=\left({\begin{array}{cc}1&0\\0&-1\end{array}}\right)}  .
Keeping in mind that T a b = 0 {\displaystyle T_{ab}=0}   one can derive the constraints:
T 01 = T 10 = X ˙ X ′ = 0 , T 00 = T 11 = 1 2 ( X ˙ 2 + X ′ 2 ) = 0. {\displaystyle {\begin{aligned}T_{01}&=T_{10}={\dot {X}}X'=0,\\T_{00}&=T_{11}={\frac {1}{2}}\left({\dot {X}}^{2}+X'^{2}\right)=0.\end{aligned}}} Substituting X μ → X μ + δ X μ {\displaystyle X^{\mu }\to X^{\mu }+\delta X^{\mu }}  , one obtains
δ S = T ∫ d 2 σ η a b ∂ a X μ ∂ b δ X μ = − T ∫ d 2 σ η a b ∂ a ∂ b X μ δ X μ + ( T ∫ d τ X ′ δ X ) σ = π − ( T ∫ d τ X ′ δ X ) σ = 0 = 0. {\displaystyle {\begin{aligned}\delta {\mathcal {S}}&=T\int \mathrm {d} ^{2}\sigma \eta ^{ab}\partial _{a}X^{\mu }\partial _{b}\delta X_{\mu }\\&=-T\int \mathrm {d} ^{2}\sigma \eta ^{ab}\partial _{a}\partial _{b}X^{\mu }\delta X_{\mu }+\left(T\int d\tau X'\delta X\right)_{\sigma =\pi }-\left(T\int d\tau X'\delta X\right)_{\sigma =0}\\&=0.\end{aligned}}} And consequently
◻ X μ = η a b ∂ a ∂ b X μ = 0. {\displaystyle \square X^{\mu }=\eta ^{ab}\partial _{a}\partial _{b}X^{\mu }=0.} The boundary conditions to satisfy the second part of the variation of the action are as follows.
Closed strings:  Periodic boundary conditions : X μ ( τ , σ + π ) = X μ ( τ , σ ) . {\displaystyle X^{\mu }(\tau ,\sigma +\pi )=X^{\mu }(\tau ,\sigma ).}   Open strings: Neumann boundary conditions : ∂ σ X μ ( τ , 0 ) = 0 , ∂ σ X μ ( τ , π ) = 0. {\displaystyle \partial _{\sigma }X^{\mu }(\tau ,0)=0,\partial _{\sigma }X^{\mu }(\tau ,\pi )=0.}   Dirichlet boundary conditions : X μ ( τ , 0 ) = b μ , X μ ( τ , π ) = b ′ μ . {\displaystyle X^{\mu }(\tau ,0)=b^{\mu },X^{\mu }(\tau ,\pi )=b'^{\mu }.}   Working in light-cone coordinates  ξ ± = τ ± σ {\displaystyle \xi ^{\pm }=\tau \pm \sigma }  , we can rewrite the equations of motion as
∂ + ∂ − X μ = 0 , ( ∂ + X ) 2 = ( ∂ − X ) 2 = 0. {\displaystyle {\begin{aligned}\partial _{+}\partial _{-}X^{\mu }&=0,\\(\partial _{+}X)^{2}=(\partial _{-}X)^{2}&=0.\end{aligned}}} Thus, the solution can be written as X μ = X + μ ( ξ + ) + X − μ ( ξ − ) {\displaystyle X^{\mu }=X_{+}^{\mu }(\xi ^{+})+X_{-}^{\mu }(\xi ^{-})}  , and the stress-energy tensor is now diagonal. By Fourier-expanding  the solution and imposing canonical commutation relations  on the coefficients, applying the second equation of motion motivates the definition of the Virasoro operators and lead to the Virasoro constraints  that vanish when acting on physical states.
Further reading Polchinski (Nov, 1994). What is String Theory , NSF-ITP-94-97, 153  pp., arXiv:hep-th/9411028v1 . Ooguri, Yin (Feb, 1997). TASI Lectures on Perturbative String Theories , UCB-PTH-96/64, LBNL-39774, 80  pp., arXiv:hep-th/9612254v3 . 
Theories Models 
Regular Low dimensional Conformal Supersymmetric Superconformal Supergravity Topological Particle theory 
Related 
This page is based on this 
Wikipedia article  Text is available under the 
CC BY-SA 4.0  license; additional terms may apply.
Images, videos and audio are available under their respective licenses.