Two-dimensional conformal field theory

Last updated

A two-dimensional conformal field theory is a quantum field theory on a Euclidean two-dimensional space, that is invariant under local conformal transformations.

Contents

In contrast to other types of conformal field theories, two-dimensional conformal field theories have infinite-dimensional symmetry algebras. In some cases, this allows them to be solved exactly, using the conformal bootstrap method.

Notable two-dimensional conformal field theories include minimal models, Liouville theory, massless free bosonic theories, Wess–Zumino–Witten models, and certain sigma models.

Basic structures

Geometry

Two-dimensional conformal field theories (CFTs) are defined on Riemann surfaces, where local conformal maps are holomorphic functions. While a CFT might conceivably exist only on a given Riemann surface, its existence on any surface other than the sphere implies its existence on all surfaces. [1] [2] Given a CFT, it is indeed possible to glue two Riemann surfaces where it exists, and obtain the CFT on the glued surface. [1] [3] On the other hand, some CFTs exist only on the sphere. Unless stated otherwise, we consider CFT on the sphere in this article.

Symmetries and integrability

Given a local complex coordinate , the real vector space of infinitesimal conformal maps has the basis , with . (For example, and generate translations.) Relaxing the assumption that is the complex conjugate of , i.e. complexifying the space of infinitesimal conformal maps, one obtains a complex vector space with the basis .

With their natural commutators, the differential operators generate a Witt algebra. By standard quantum-mechanical arguments, the symmetry algebra of conformal field theory must be the central extension of the Witt algebra, i.e. the Virasoro algebra, whose generators are , plus a central generator. In a given CFT, the central generator takes a constant value , called the central charge.

The symmetry algebra is therefore the product of two copies of the Virasoro algebra: the left-moving or holomorphic algebra, with generators , and the right-moving or antiholomorphic algebra, with generators . [4]

In the universal enveloping algebra of the Virasoro algebra, it is possible to construct an infinite set of mutually commuting charges. The first charge is , the second charge is quadratic in the Virasoro generators, the third charge is cubic, and so on. This shows that any two-dimensional conformal field theory is also a quantum integrable system. [5]

Space of states

The space of states, also called the spectrum, of a CFT, is a representation of the product of the two Virasoro algebras.

For a state that is an eigenvector of and with the eigenvalues and ,

A CFT is called rational if its space of states decomposes into finitely many irreducible representations of the product of the two Virasoro algebras. In a rational CFT that is defined on all Riemann surfaces, the central charge and conformal dimensions are rational numbers. [6]

A CFT is called diagonal if its space of states is a direct sum of representations of the type , where is an indecomposable representation of the left Virasoro algebra, and is the same representation of the right Virasoro algebra.

The CFT is called unitary if the space of states has a positive definite Hermitian form such that and are self-adjoint, and . This implies in particular that , and that the central charge is real. The space of states is then a Hilbert space. While unitarity is necessary for a CFT to be a proper quantum system with a probabilistic interpretation, many interesting CFTs are nevertheless non-unitary, including minimal models and Liouville theory for most allowed values of the central charge.

Fields and correlation functions

The state-field correspondence is a linear map from the space of states to the space of fields, which commutes with the action of the symmetry algebra.

In particular, the image of a primary state of a lowest weight representation of the Virasoro algebra is a primary field [7] , such that

Descendant fields are obtained from primary fields by acting with creation modes . Degenerate fields correspond to primary states of degenerate representations. For example, the degenerate field obeys , due to the presence of a null vector in the corresponding degenerate representation.

An -point correlation function is a number that depends linearly on fields, denoted as with . In the path integral formulation of conformal field theory, correlation functions are defined as functional integrals. In the conformal bootstrap approach, correlation functions are defined by axioms. In particular, it is assumed that there exists an operator product expansion (OPE), [7]

where is a basis of the space of states, and the numbers are called OPE coefficients. Moreover, correlation functions are assumed to be invariant under permutations on the fields, in other words the OPE is assumed to be associative and commutative. (OPE commutativity does not imply that OPE coefficients are invariant under , because expanding on fields breaks that symmetry.)

OPE commutativity implies that primary fields have integer conformal spins . A primary field with zero conformal spin is called a diagonal field. There also exist fermionic CFTs that include fermionic fields with half-integer conformal spins , which anticommute. [8] There also exist parafermionic CFTs that include fields with more general rational spins . Not only parafermions do not commute, but also their correlation functions are multivalued.

The torus partition function is a particular correlation function that depends solely on the spectrum , and not on the OPE coefficients. For a complex torus with modulus , the partition function is

where . The torus partition function coincides with the character of the spectrum, considered as a representation of the symmetry algebra.

Chiral conformal field theory

In a two-dimensional conformal field theory, properties are called chiral if they follow from the action of one of the two Virasoro algebras. If the space of states can be decomposed into factorized representations of the product of the two Virasoro algebras, then all consequences of conformal symmetry are chiral. In other words, the actions of the two Virasoro algebras can be studied separately.

Energy–momentum tensor

The dependence of a field on its position is assumed to be determined by

It follows that the OPE

defines a locally holomorphic field that does not depend on This field is identified with (a component of) the energy–momentum tensor. [4] In particular, the OPE of the energy–momentum tensor with a primary field is

The OPE of the energy–momentum tensor with itself is

where is the central charge. (This OPE is equivalent to the commutation relations of the Virasoro algebra.)

Conformal Ward identities

Conformal Ward identities are linear equations that correlation functions obey as a consequence of conformal symmetry. [4] They can be derived by studying correlation functions that involve insertions of the energy–momentum tensor. Their solutions are conformal blocks.

For example, consider conformal Ward identities on the sphere. Let be a global complex coordinate on the sphere, viewed as Holomorphy of the energy–momentum tensor at is equivalent to

Moreover, inserting in an -point function of primary fields yields

From the last two equations, it is possible to deduce local Ward identities that express -point functions of descendant fields in terms of -point functions of primary fields. Moreover, it is possible to deduce three differential equations for any -point function of primary fields, called global conformal Ward identities:

These identities determine how two- and three-point functions depend on

where the undetermined proportionality coefficients are functions of

BPZ equations

A correlation function that involves a degenerate field satisfies a linear partial differential equation called a Belavin–Polyakov–Zamolodchikov equation after Alexander Belavin, Alexander Polyakov and Alexander Zamolodchikov. [7] The order of this equation is the level of the null vector in the corresponding degenerate representation.

A trivial example is the order one BPZ equation

which follows from

The first nontrivial example involves a degenerate field with a vanishing null vector at the level two,

where is related to the central charge by

Then an -point function of and other primary fields obeys:

A BPZ equation of order for a correlation function that involve the degenerate field can be deduced from the vanishing of the null vector, and the local Ward identities. Thanks to global Ward identities, four-point functions can be written in terms of one variable instead of four, and BPZ equations for four-point functions can be reduced to ordinary differential equations.

Fusion rules

In an OPE that involves a degenerate field, the vanishing of the null vector (plus conformal symmetry) constrains which primary fields can appear. The resulting constraints are called fusion rules. [4] Using the momentum such that

instead of the conformal dimension for parametrizing primary fields, the fusion rules are

in particular

Alternatively, fusion rules have an algebraic definition in terms of an associative fusion product of representations of the Virasoro algebra at a given central charge. The fusion product differs from the tensor product of representations. (In a tensor product, the central charges add.) In certain finite cases, this leads to the structure of a fusion category.

A conformal field theory is quasi-rational is the fusion product of two indecomposable representations is a sum of finitely many indecomposable representations. [9] For example, generalized minimal models are quasi-rational without being rational.

Conformal bootstrap

The conformal bootstrap method consists in defining and solving CFTs using only symmetry and consistency assumptions, by reducing all correlation functions to combinations of structure constants and conformal blocks. In two dimensions, this method leads to exact solutions of certain CFTs, and to classifications of rational theories.

Structure constants

Let be a left- and right-primary field with left- and right-conformal dimensions and . According to the left and right global Ward identities, three-point functions of such fields are of the type

where the -independent number is called a three-point structure constant. For the three-point function to be single-valued, the left- and right-conformal dimensions of primary fields must obey

This condition is satisfied by bosonic () and fermionic () fields. It is however violated by parafermionic fields (), whose correlation functions are therefore not single-valued on the Riemann sphere.

Three-point structure constants also appear in OPEs,

The contributions of descendant fields, denoted by the dots, are completely determined by conformal symmetry. [4]

Conformal blocks

Any correlation function can be written as a linear combination of conformal blocks: functions that are determined by conformal symmetry, and labelled by representations of the symmetry algebra. The coefficients of the linear combination are products of structure constants. [7]

In two-dimensional CFT, the symmetry algebra is factorized into two copies of the Virasoro algebra, and a conformal block that involves primary fields has a holomorphic factorization: it is a product of a locally holomorphic factor that is determined by the left-moving Virasoro algebra, and a locally antiholomorphic factor that is determined by the right-moving Virasoro algebra. These factors are themselves called conformal blocks.

For example, using the OPE of the first two fields in a four-point function of primary fields yields

where is an s-channel four-point conformal block. Four-point conformal blocks are complicated functions that can be efficiently computed using Alexei Zamolodchikov's recursion relations. If one of the four fields is degenerate, then the corresponding conformal blocks obey BPZ equations. If in particular one the four fields is , then the corresponding conformal blocks can be written in terms of the hypergeometric function.

As first explained by Witten, [10] the space of conformal blocks of a two-dimensional CFT can be identified with the quantum Hilbert space of a 2+1 dimensional Chern-Simons theory, which is an example of a topological field theory. This connection has been very fruitful in the theory of the fractional quantum Hall effect.

Conformal bootstrap equations

When a correlation function can be written in terms of conformal blocks in several different ways, the equality of the resulting expressions provides constraints on the space of states and on three-point structure constants. These constraints are called the conformal bootstrap equations. While the Ward identities are linear equations for correlation functions, the conformal bootstrap equations depend non-linearly on the three-point structure constants.

For example, a four-point function can be written in terms of conformal blocks in three inequivalent ways, corresponding to using the OPEs (s-channel), (t-channel) or (u-channel). The equality of the three resulting expressions is called crossing symmetry of the four-point function, and is equivalent to the associativity of the OPE. [7]

For example, the torus partition function is invariant under the action of the modular group on the modulus of the torus, equivalently . This invariance is a constraint on the space of states. The study of modular invariant torus partition functions is sometimes called the modular bootstrap.

The consistency of a CFT on the sphere is equivalent to crossing symmetry of the four-point function. The consistency of a CFT on all Riemann surfaces also requires modular invariance of the torus one-point function. [1] Modular invariance of the torus partition function is therefore neither necessary, nor sufficient, for a CFT to exist. It has however been widely studied in rational CFTs, because characters of representations are simpler than other kinds of conformal blocks, such as sphere four-point conformal blocks.

Examples

Minimal models

A minimal model is a CFT whose spectrum is built from finitely many irreducible representations of the Virasoro algebra. Minimal models only exist for particular values of the central charge, [4]

There is an ADE classification of minimal models. [11] In particular, the A-series minimal model with the central charge is a diagonal CFT whose spectrum is built from degenerate lowest weight representations of the Virasoro algebra. These degenerate representations are labelled by pairs of integers that form the Kac table,

For example, the A-series minimal model with describes spin and energy correlators of the two-dimensional critical Ising model.

Liouville theory

For any Liouville theory is a diagonal CFT whose spectrum is built from Verma modules with conformal dimensions

Liouville theory has been solved, in the sense that its three-point structure constants are explicitly known. Liouville theory has applications to string theory, and to two-dimensional quantum gravity.

Extended symmetry algebras

In some CFTs, the symmetry algebra is not just the Virasoro algebra, but an associative algebra (i.e. not necessarily a Lie algebra) that contains the Virasoro algebra. The spectrum is then decomposed into representations of that algebra, and the notions of diagonal and rational CFTs are defined with respect to that algebra. [4]

Massless free bosonic theories

In two dimensions, massless free bosonic theories are conformally invariant. Their symmetry algebra is the affine Lie algebra built from the abelian, rank one Lie algebra. The fusion product of any two representations of this symmetry algebra yields only one representation, and this makes correlation functions very simple.

Viewing minimal models and Liouville theory as perturbed free bosonic theories leads to the Coulomb gas method for computing their correlation functions. Moreover, for there is a one-parameter family of free bosonic theories with infinite discrete spectrums, which describe compactified free bosons, with the parameter being the compactification radius. [4]

Wess–Zumino–Witten models

Given a Lie group the corresponding Wess–Zumino–Witten model is a CFT whose symmetry algebra is the affine Lie algebra built from the Lie algebra of If is compact, then this CFT is rational, its central charge takes discrete values, and its spectrum is known.

Superconformal field theories

The symmetry algebra of a supersymmetric CFT is a super Virasoro algebra, or a larger algebra. Supersymmetric CFTs are in particular relevant to superstring theory.

Theories based on W-algebras

W-algebras are natural extensions of the Virasoro algebra. CFTs based on W-algebras include generalizations of minimal models and Liouville theory, respectively called W-minimal models and conformal Toda theories. Conformal Toda theories are more complicated than Liouville theory, and less well understood.

Sigma models

In two dimensions, classical sigma models are conformally invariant, but only some target manifolds lead to quantum sigma models that are conformally invariant. Examples of such target manifolds include toruses, and Calabi–Yau manifolds.

Logarithmic conformal field theories

Logarithmic conformal field theories are two-dimensional CFTs such that the action of the Virasoro algebra generator on the spectrum is not diagonalizable. In particular, the spectrum cannot be built solely from lowest weight representations. As a consequence, the dependence of correlation functions on the positions of the fields can be logarithmic. This contrasts with the power-like dependence of the two- and three-point functions that are associated to lowest weight representations.

Critical Q-state Potts model

The critical -state Potts model or critical random cluster model is a conformal field theory that generalizes and unifies the critical Ising model, Potts model, and percolation. The model has a parameter , which must be integer in the Potts model, but which can take any complex value in the random cluster model. [12] This parameter is related to the central charge by

Special values of include: [13]

Related statistical model
Uniform spanning tree
Percolation
Ising model
Tricritical Ising model
Three-state Potts model
Tricritical three-state Potts model
Ashkin–Teller model

The known torus partition function [14] suggests that the model is non-rational with a discrete spectrum.

Related Research Articles

<span class="mw-page-title-main">Virasoro algebra</span> Algebra describing 2D conformal symmetry

In mathematics, the Virasoro algebra is a complex Lie algebra and the unique central extension of the Witt algebra. It is widely used in two-dimensional conformal field theory and in string theory.

A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified.

In mathematics, a vertex operator algebra (VOA) is an algebraic structure that plays an important role in two-dimensional conformal field theory and string theory. In addition to physical applications, vertex operator algebras have proven useful in purely mathematical contexts such as monstrous moonshine and the geometric Langlands correspondence.

In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. Given an affine Lie algebra, one can also form the associated affine Kac-Moody algebra, as described below. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities.

In theoretical physics and mathematics, a Wess–Zumino–Witten (WZW) model, also called a Wess–Zumino–Novikov–Witten model, is a type of two-dimensional conformal field theory named after Julius Wess, Bruno Zumino, Sergei Novikov and Edward Witten. A WZW model is associated to a Lie group, and its symmetry algebra is the affine Lie algebra built from the corresponding Lie algebra. By extension, the name WZW model is sometimes used for any conformal field theory whose symmetry algebra is an affine Lie algebra.

The Artin reciprocity law, which was established by Emil Artin in a series of papers, is a general theorem in number theory that forms a central part of global class field theory. The term "reciprocity law" refers to a long line of more concrete number theoretic statements which it generalized, from the quadratic reciprocity law and the reciprocity laws of Eisenstein and Kummer to Hilbert's product formula for the norm symbol. Artin's result provided a partial solution to Hilbert's ninth problem.

In theoretical physics, the superconformal algebra is a graded Lie algebra or superalgebra that combines the conformal algebra and supersymmetry. In two dimensions, the superconformal algebra is infinite-dimensional. In higher dimensions, superconformal algebras are finite-dimensional and generate the superconformal group.

In conformal field theory and representation theory, a W-algebra is an associative algebra that generalizes the Virasoro algebra. W-algebras were introduced by Alexander Zamolodchikov, and the name "W-algebra" comes from the fact that Zamolodchikov used the letter W for one of the elements of one of his examples.

<span class="mw-page-title-main">Lie point symmetry</span>

Lie point symmetry is a concept in advanced mathematics. Towards the end of the nineteenth century, Sophus Lie introduced the notion of Lie group in order to study the solutions of ordinary differential equations (ODEs). He showed the following main property: the order of an ordinary differential equation can be reduced by one if it is invariant under one-parameter Lie group of point transformations. This observation unified and extended the available integration techniques. Lie devoted the remainder of his mathematical career to developing these continuous groups that have now an impact on many areas of mathematically based sciences. The applications of Lie groups to differential systems were mainly established by Lie and Emmy Noether, and then advocated by Élie Cartan.

In mathematical physics, the 2D N = 2 superconformal algebra is an infinite-dimensional Lie superalgebra, related to supersymmetry, that occurs in string theory and two-dimensional conformal field theory. It has important applications in mirror symmetry. It was introduced by M. Ademollo, L. Brink, and A. D'Adda et al. (1976) as a gauge algebra of the U(1) fermionic string.

In physics, Liouville field theory is a two-dimensional conformal field theory whose classical equation of motion is a generalization of Liouville's equation.

<span class="mw-page-title-main">Lie algebra extension</span> Creating a "larger" Lie algebra from a smaller one, in one of several ways

In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extensione is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.

In string theory, the Ramond–Neveu–Schwarz (RNS) formalism is an approach to formulating superstrings in which the worldsheet has explicit superconformal invariance but spacetime supersymmetry is hidden, in contrast to the Green–Schwarz formalism where the latter is explicit. It was originally developed by Pierre Ramond, André Neveu and John Schwarz in the RNS model in 1971, which gives rise to type II string theories and can also give type I string theory. Heterotic string theories can also be acquired through this formalism by using a different worldsheet action. There are various ways to quantize the string within this framework including light-cone quantization, old canonical quantization, and BRST quantization. A consistent string theory is only acquired if the spectrum of states is restricted through a procedure known as a GSO projection, with this projection being automatically incorporated in the Green–Schwarz formalism.

Higher-spin theory or higher-spin gravity is a common name for field theories that contain massless fields of spin greater than two. Usually, the spectrum of such theories contains the graviton as a massless spin-two field, which explains the second name. Massless fields are gauge fields and the theories should be (almost) completely fixed by these higher-spin symmetries. Higher-spin theories are supposed to be consistent quantum theories and, for this reason, to give examples of quantum gravity. Most of the interest in the topic is due to the AdS/CFT correspondence where there is a number of conjectures relating higher-spin theories to weakly coupled conformal field theories. It is important to note that only certain parts of these theories are known at present and not many examples have been worked out in detail except some specific toy models.

In two-dimensional conformal field theory, Virasoro conformal blocks are special functions that serve as building blocks of correlation functions. On a given punctured Riemann surface, Virasoro conformal blocks form a particular basis of the space of solutions of the conformal Ward identities. Zero-point blocks on the torus are characters of representations of the Virasoro algebra; four-point blocks on the sphere reduce to hypergeometric functions in special cases, but are in general much more complicated. In two dimensions as in other dimensions, conformal blocks play an essential role in the conformal bootstrap approach to conformal field theory.

The two-dimensional critical Ising model is the critical limit of the Ising model in two dimensions. It is a two-dimensional conformal field theory whose symmetry algebra is the Virasoro algebra with the central charge . Correlation functions of the spin and energy operators are described by the minimal model. While the minimal model has been exactly solved, see also, e.g., the article on Ising critical exponents, the solution does not cover other observables such as connectivities of clusters.

In abstract algebra, the Virasoro group or Bott–Virasoro group is an infinite-dimensional Lie group defined as the universal central extension of the group of diffeomorphisms of the circle. The corresponding Lie algebra is the Virasoro algebra, which has a key role in conformal field theory (CFT) and string theory.

The three-state Potts CFT, also known as the parafermion CFT, is a conformal field theory in two dimensions. It is a minimal model with central charge . It is considered to be the simplest minimal model with a non-diagonal partition function in Virasoro characters, as well as the simplest non-trivial CFT with the W-algebra as a symmetry.

Massless free scalar bosons are a family of two-dimensional conformal field theories, whose symmetry is described by an abelian affine Lie algebra.

Hamiltonian truncation is a numerical method used to study quantum field theories (QFTs) in spacetime dimensions. Hamiltonian truncation is an adaptation of the Rayleigh–Ritz method from quantum mechanics. It is closely related to the exact diagonalization method used to treat spin systems in condensed matter physics. The method is typically used to study QFTs on spacetimes of the form , specifically to compute the spectrum of the Hamiltonian along . A key feature of Hamiltonian truncation is that an explicit ultraviolet cutoff is introduced, akin to the lattice spacing a in lattice Monte Carlo methods. Since Hamiltonian truncation is a nonperturbative method, it can be used to study strong-coupling phenomena like spontaneous symmetry breaking.

References

  1. 1 2 3 Moore, Gregory; Seiberg, Nathan (1989). "Classical and quantum conformal field theory". Communications in Mathematical Physics. 123 (2): 177–254. Bibcode:1989CMaPh.123..177M. doi:10.1007/BF01238857. S2CID   122836843.
  2. Bakalov, Bojko; Kirillov, Alexander (1998-09-10). "On the Lego-Teichmuller game". arXiv: math/9809057 . Bibcode:1998math......9057B.
  3. Teschner, Joerg (2017-08-02). "A guide to two-dimensional conformal field theory". arXiv: 1708.00680v2 [hep-th].
  4. 1 2 3 4 5 6 7 8 P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory, Springer-Verlag, New York, 1997. ISBN   0-387-94785-X.
  5. Bazhanov, V.; Lukyanov, S.; Zamolodchikov, A. (1996). "Integrable Structure of Conformal Field Theory, Quantum KdV Theory and Thermodynamic Bethe Ansatz". Communications in Mathematical Physics. 177 (2): 381–398. arXiv: hep-th/9412229 . Bibcode:1996CMaPh.177..381B. doi:10.1007/BF02101898. S2CID   17051784.
  6. Vafa, Cumrun (1988). "Toward classification of conformal theories". Physics Letters B. Elsevier BV. 206 (3): 421–426. doi:10.1016/0370-2693(88)91603-6. ISSN   0370-2693.
  7. 1 2 3 4 5 Belavin, A.A.; Polyakov, A.M.; Zamolodchikov, A.B. (1984). "Infinite conformal symmetry in two-dimensional quantum field theory" (PDF). Nuclear Physics B. 241 (2): 333–380. Bibcode:1984NuPhB.241..333B. doi:10.1016/0550-3213(84)90052-X. ISSN   0550-3213.
  8. Runkel, Ingo; Watts, Gerard M. T. (2020-01-14). "Fermionic CFTs and classifying algebras". Journal of High Energy Physics. 2020 (6): 25. arXiv: 2001.05055v1 . Bibcode:2020JHEP...06..025R. doi:10.1007/JHEP06(2020)025. S2CID   210718696.
  9. Moore, Gregory; Seiberg, Nathan (1989). "Naturality in conformal field theory". Nuclear Physics B. Elsevier BV. 313 (1): 16–40. Bibcode:1989NuPhB.313...16M. doi:10.1016/0550-3213(89)90511-7. ISSN   0550-3213.
  10. Witten, E. (1989). "Quantum Field Theory and the Jones Polynomial". Comm. Math. Phys. 121 (3): 351. Bibcode:1989CMaPh.121..351W. doi:10.1007/BF01217730. S2CID   14951363.
  11. Andrea Cappelli and Jean-Bernard Zuber (2010), "A-D-E Classification of Conformal Field Theories", Scholarpedia 5(4):10314.
  12. Fortuin, C.M.; Kasteleyn, P.W. (1972). "On the random-cluster model". Physica. 57 (4): 536–564. doi:10.1016/0031-8914(72)90045-6. ISSN   0031-8914.
  13. Picco, Marco; Ribault, Sylvain; Santachiara, Raoul (2016). "A conformal bootstrap approach to critical percolation in two dimensions". SciPost Physics. 1 (1): 009. arXiv: 1607.07224 . Bibcode:2016ScPP....1....9P. doi: 10.21468/SciPostPhys.1.1.009 . S2CID   10536203.
  14. Di Francesco, P.; Saleur, H.; Zuber, J.B. (1987). "Modular invariance in non-minimal two-dimensional conformal theories". Nuclear Physics B. 285: 454–480. Bibcode:1987NuPhB.285..454D. doi:10.1016/0550-3213(87)90349-x. ISSN   0550-3213.

Further reading