Dirac sea

Last updated
Dirac sea for a massive particle.  *  particles,  *  antiparticles Dirac sea.svg
Dirac sea for a massive particle.    particles,    antiparticles

The Dirac sea is a theoretical model of the electron vacuum as an infinite sea of electrons with negative energy, now called positrons . It was first postulated by the British physicist Paul Dirac in 1930 [1] to explain the anomalous negative-energy quantum states predicted by the relativistically-correct Dirac equation for electrons. [2] The positron, the antimatter counterpart of the electron, was originally conceived of as a hole in the Dirac sea, before its experimental discovery in 1932. [nb 1]

Contents

In hole theory, the solutions with negative time evolution factors[ clarification needed ] are reinterpreted as representing the positron, discovered by Carl Anderson. The interpretation of this result requires a Dirac sea, showing that the Dirac equation is not merely a combination of special relativity and quantum mechanics, but it also implies that the number of particles cannot be conserved. [3]

Dirac sea theory has been displaced by quantum field theory, though they are mathematically compatible.

Origins

Similar ideas on holes in crystals had been developed by Soviet physicist Yakov Frenkel in 1926, but there is no indication the concept was discussed with Dirac when the two met in a Soviet physics congress in the summer of 1928.

The origins of the Dirac sea lie in the energy spectrum of the Dirac equation, an extension of the Schrödinger equation consistent with special relativity, an equation that Dirac had formulated in 1928. Although this equation was extremely successful in describing electron dynamics, it possesses a rather peculiar feature: for each quantum state possessing a positive energy E, there is a corresponding state with energy -E. This is not a big difficulty when an isolated electron is considered, because its energy is conserved and negative-energy electrons may be left out. However, difficulties arise when effects of the electromagnetic field are considered, because a positive-energy electron would be able to shed energy by continuously emitting photons, a process that could continue without limit as the electron descends into ever lower energy states. However, real electrons clearly do not behave in this way.

Dirac's solution to this was to rely on the Pauli exclusion principle. Electrons are fermions, and obey the exclusion principle, which means that no two electrons can share a single energy state within an atom. Dirac hypothesized that what we think of as the "vacuum" is actually the state in which all the negative-energy states are filled, and none of the positive-energy states. Therefore, if we want to introduce a single electron, we would have to put it in a positive-energy state, as all the negative-energy states are occupied. Furthermore, even if the electron loses energy by emitting photons it would be forbidden from dropping below zero energy.

Dirac further pointed out that a situation might exist in which all the negative-energy states are occupied except one. This "hole" in the sea of negative-energy electrons would respond to electric fields as though it were a positively charged particle. Initially, Dirac identified this hole as a proton. However, Robert Oppenheimer pointed out that an electron and its hole would be able to annihilate each other, releasing energy on the order of the electron's rest energy in the form of energetic photons; if holes were protons, stable atoms would not exist. [4] Hermann Weyl also noted that a hole should act as though it has the same mass as an electron, whereas the proton is about two thousand times heavier. The issue was finally resolved in 1932, when the positron was discovered by Carl Anderson, with all the physical properties predicted for the Dirac hole.

Inelegance of Dirac sea

Despite its success, the idea of the Dirac sea tends not to strike people as very elegant. The existence of the sea implies an infinite negative electric charge filling all of space. In order to make any sense out of this, one must assume that the "bare vacuum" must have an infinite positive charge density which is exactly cancelled by the Dirac sea. Since the absolute energy density is unobservable—the cosmological constant aside—the infinite energy density of the vacuum does not represent a problem. Only changes in the energy density are observable. Geoffrey Landis also notes[ citation needed ] that Pauli exclusion does not definitively mean that a filled Dirac sea cannot accept more electrons, since, as Hilbert elucidated, a sea of infinite extent can accept new particles even if it is filled. This happens when we have a chiral anomaly and a gauge instanton.

The development of quantum field theory (QFT) in the 1930s made it possible to reformulate the Dirac equation in a way that treats the positron as a "real" particle rather than the absence of a particle, and makes the vacuum the state in which no particles exist instead of an infinite sea of particles. This picture recaptures all the valid predictions of the Dirac sea[ citation needed ], such as electron-positron annihilation. On the other hand, the field formulation does not eliminate all the difficulties raised by the Dirac sea; in particular the problem of the vacuum possessing infinite energy.

Mathematical expression

Upon solving the free Dirac equation,

one finds [5]

where

for plane wave solutions with 3-momentum p. This is a direct consequence of the relativistic energy-momentum relation

upon which the Dirac equation is built. The quantity U is a constant 2 × 1 column vector and N is a normalization constant. The quantity ε is called the time evolution factor, and its interpretation in similar roles in, for example, the plane wave solutions of the Schrödinger equation, is the energy of the wave (particle). This interpretation is not immediately available here since it may acquire negative values. A similar situation prevails for the Klein–Gordon equation. In that case, the absolute value of ε can be interpreted as the energy of the wave since in the canonical formalism, waves with negative ε actually have positive energy Ep. [6] But this is not the case with the Dirac equation. The energy in the canonical formalism associated with negative ε is Ep. [7]

Modern interpretation

The Dirac sea interpretation and the modern QFT interpretation are related by what may be thought of as a very simple Bogoliubov transformation, an identification between the creation and annihilation operators of two different free field theories.[ citation needed ] In the modern interpretation, the field operator for a Dirac spinor is a sum of creation operators and annihilation operators, in a schematic notation:

An operator with negative frequency lowers the energy of any state by an amount proportional to the frequency, while operators with positive frequency raise the energy of any state.

In the modern interpretation, the positive frequency operators add a positive energy particle, adding to the energy, while the negative frequency operators annihilate a positive energy particle, and lower the energy. For a fermionic field, the creation operator gives zero when the state with momentum k is already filled, while the annihilation operator gives zero when the state with momentum k is empty.

But then it is possible to reinterpret the annihilation operator as a creation operator for a negative energy particle. It still lowers the energy of the vacuum, but in this point of view it does so by creating a negative energy object. This reinterpretation only affects the philosophy. To reproduce the rules for when annihilation in the vacuum gives zero, the notion of "empty" and "filled" must be reversed for the negative energy states. Instead of being states with no antiparticle, these are states that are already filled with a negative energy particle.

The price is that there is a nonuniformity in certain expressions, because replacing annihilation with creation adds a constant to the negative energy particle number. The number operator for a Fermi field [8] is:

which means that if one replaces N by 1−N for negative energy states, there is a constant shift in quantities like the energy and the charge density, quantities that count the total number of particles. The infinite constant gives the Dirac sea an infinite energy and charge density. The vacuum charge density should be zero, since the vacuum is Lorentz invariant, but this is artificial to arrange in Dirac's picture. The way it is done is by passing to the modern interpretation.

Dirac's idea is more directly applicable to solid state physics, where the valence band in a solid can be regarded as a "sea" of electrons. Holes in this sea indeed occur, and are extremely important for understanding the effects of semiconductors, though they are never referred to as "positrons". Unlike in particle physics, there is an underlying positive charge—the charge of the ionic lattice—that cancels out the electric charge of the sea.

Revival in the theory of causal fermion systems

Dirac's original concept of a sea of particles was revived in the theory of causal fermion systems, a recent proposal for a unified physical theory. In this approach, the problems of the infinite vacuum energy and infinite charge density of the Dirac sea disappear because these divergences drop out of the physical equations formulated via the causal action principle. [9] These equations do not require a preexisting space-time, making it possible to realize the concept that space-time and all structures therein arise as a result of the collective interaction of the sea states with each other and with the additional particles and "holes" in the sea.

See also

Remarks

  1. This was not the original intent of Dirac though, as the title of his 1930 paper (A Theory of Electrons and Protons) indicates. But it soon afterwards became clear that the mass of holes must be that of the electron.

Notes

Related Research Articles

<span class="mw-page-title-main">Antiparticle</span> Particle with opposite charges

In particle physics, every type of particle of "ordinary" matter is associated with an antiparticle with the same mass but with opposite physical charges. For example, the antiparticle of the electron is the positron. While the electron has a negative electric charge, the positron has a positive electric charge, and is produced naturally in certain types of radioactive decay. The opposite is also true: the antiparticle of the positron is the electron.

<span class="mw-page-title-main">Positron</span> Anti-particle to the electron

The positron or antielectron is the particle with an electric charge of +1e, a spin of 1/2, and the same mass as an electron. It is the antiparticle of the electron. When a positron collides with an electron, annihilation occurs. If this collision occurs at low energies, it results in the production of two or more photons.

<span class="mw-page-title-main">Quantum field theory</span> Theoretical framework

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. The current standard model of particle physics is based on quantum field theory.

<span class="mw-page-title-main">Quantum electrodynamics</span> Quantum field theory of electromagnetism

In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and special relativity is achieved. QED mathematically describes all phenomena involving electrically charged particles interacting by means of exchange of photons and represents the quantum counterpart of classical electromagnetism giving a complete account of matter and light interaction.

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.

<span class="mw-page-title-main">Positronium</span> Bound state of an electron and positron

Positronium (Ps) is a system consisting of an electron and its anti-particle, a positron, bound together into an exotic atom, specifically an onium. Unlike hydrogen, the system has no protons. The system is unstable: the two particles annihilate each other to predominantly produce two or three gamma-rays, depending on the relative spin states. The energy levels of the two particles are similar to that of the hydrogen atom. However, because of the reduced mass, the frequencies of the spectral lines are less than half of those for the corresponding hydrogen lines.

<span class="mw-page-title-main">Schrödinger equation</span> Description of a quantum-mechanical system

The Schrödinger equation is a partial differential equation that governs the wave function of a quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

<span class="mw-page-title-main">Wave function</span> Mathematical description of quantum state

In quantum physics, a wave function is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ. Wave functions are complex-valued. For example, a wave function might assign a complex number to each point in a region of space. The Born rule provides the means to turn these complex probability amplitudes into actual probabilities. In one common form, it says that the squared modulus of a wave function that depends upon position is the probability density of measuring a particle as being at a given place. The integral of a wavefunction's squared modulus over all the system's degrees of freedom must be equal to 1, a condition called normalization. Since the wave function is complex-valued, only its relative phase and relative magnitude can be measured; its value does not, in isolation, tell anything about the magnitudes or directions of measurable observables. One has to apply quantum operators, whose eigenvalues correspond to sets of possible results of measurements, to the wave function ψ and calculate the statistical distributions for measurable quantities.

In physics, screening is the damping of electric fields caused by the presence of mobile charge carriers. It is an important part of the behavior of charge-carrying fluids, such as ionized gases, electrolytes, and charge carriers in electronic conductors . In a fluid, with a given permittivity ε, composed of electrically charged constituent particles, each pair of particles interact through the Coulomb force as where the vector r is the relative position between the charges. This interaction complicates the theoretical treatment of the fluid. For example, a naive quantum mechanical calculation of the ground-state energy density yields infinity, which is unreasonable. The difficulty lies in the fact that even though the Coulomb force diminishes with distance as 1/r2, the average number of particles at each distance r is proportional to r2, assuming the fluid is fairly isotropic. As a result, a charge fluctuation at any one point has non-negligible effects at large distances.

A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle, which allows the virtual particles to spontaneously emerge from vacuum at short time and space ranges. The concept of virtual particles arises in the perturbation theory of quantum field theory (QFT) where interactions between ordinary particles are described in terms of exchanges of virtual particles. A process involving virtual particles can be described by a schematic representation known as a Feynman diagram, in which virtual particles are represented by internal lines.

<span class="mw-page-title-main">Relativistic wave equations</span> Wave equations respecting special and general relativity

In physics, specifically relativistic quantum mechanics (RQM) and its applications to particle physics, relativistic wave equations predict the behavior of particles at high energies and velocities comparable to the speed of light. In the context of quantum field theory (QFT), the equations determine the dynamics of quantum fields. The solutions to the equations, universally denoted as ψ or Ψ, are referred to as "wave functions" in the context of RQM, and "fields" in the context of QFT. The equations themselves are called "wave equations" or "field equations", because they have the mathematical form of a wave equation or are generated from a Lagrangian density and the field-theoretic Euler–Lagrange equations.

<span class="mw-page-title-main">Propagator</span> Function in quantum field theory showing probability amplitudes of moving particles

In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. Propagators may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.

In condensed matter physics, the Fermi surface is the surface in reciprocal space which separates occupied from unoccupied electron states at zero temperature. The shape of the Fermi surface is derived from the periodicity and symmetry of the crystalline lattice and from the occupation of electronic energy bands. The existence of a Fermi surface is a direct consequence of the Pauli exclusion principle, which allows a maximum of one electron per quantum state. The study of the Fermi surfaces of materials is called fermiology.

In physics, the zitterbewegung (German pronunciation:[ˈtsɪtɐ.bəˌveːɡʊŋ], from German zittern 'to tremble, jitter' and Bewegung 'motion') is the theoretical prediction of a rapid oscillatory motion of elementary particles that obey relativistic wave equations. This prediction was first discussed by Gregory Breit in 1928 and later by Erwin Schrödinger in 1930 as a result of analysis of the wave packet solutions of the Dirac equation for relativistic electrons in free space, in which an interference between positive and negative energy states produces an apparent fluctuation (up to the speed of light) of the position of an electron around the median, with an angular frequency of 2mc2/, or approximately 1.6×1021 radians per second.

In quantum field theory, and specifically quantum electrodynamics, vacuum polarization describes a process in which a background electromagnetic field produces virtual electron–positron pairs that change the distribution of charges and currents that generated the original electromagnetic field. It is also sometimes referred to as the self-energy of the gauge boson (photon).

In relativistic quantum mechanics, the Klein paradox is a quantum phenomenon related to particles encountering high-energy potential barriers. It is named after physicist Oskar Klein who discovered in 1929. Originally, Klein obtained a paradoxical result by applying the Dirac equation to the familiar problem of electron scattering from a potential barrier. In nonrelativistic quantum mechanics, electron tunneling into a barrier is observed, with exponential damping. However, Klein's result showed that if the potential is at least of the order of the electron mass , the barrier is nearly transparent. Moreover, as the potential approaches infinity, the reflection diminishes and the electron is always transmitted.

In physics, relativistic quantum mechanics (RQM) is any Poincaré covariant formulation of quantum mechanics (QM). This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light c, and can accommodate massless particles. The theory has application in high energy physics, particle physics and accelerator physics, as well as atomic physics, chemistry and condensed matter physics. Non-relativistic quantum mechanics refers to the mathematical formulation of quantum mechanics applied in the context of Galilean relativity, more specifically quantizing the equations of classical mechanics by replacing dynamical variables by operators. Relativistic quantum mechanics (RQM) is quantum mechanics applied with special relativity. Although the earlier formulations, like the Schrödinger picture and Heisenberg picture were originally formulated in a non-relativistic background, a few of them also work with special relativity.

<span class="mw-page-title-main">Riemann–Silberstein vector</span> Complex vector of electromagnetic fields

In mathematical physics, in particular electromagnetism, the Riemann–Silberstein vector or Weber vector named after Bernhard Riemann, Heinrich Martin Weber and Ludwik Silberstein, is a complex vector that combines the electric field E and the magnetic field B.

Dirac hole theory is a theory in quantum mechanics, named after English theoretical physicist Paul Dirac, who introduced it in 1929. The theory poses that the continuum of negative energy states, that are solutions to the Dirac equation, are filled with electrons, and the vacancies in this continuum (holes) are manifested as positrons with energy and momentum that are the negative of those of the state. The discovery of the positron in 1929 gave a considerable support to the Dirac hole theory.

Negative energy is a concept used in physics to explain the nature of certain fields, including the gravitational field and various quantum field effects.

References